BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 10200224)

  • 21. Responses to glossopharyngeal stimulus in the early embryonic chick brainstem: spatiotemporal patterns in three dimensions from repeated multiple-site optical recording of electrical activity.
    Sato K; Momose-Sato Y; Sakai T; Hirota A; Kamino K
    J Neurosci; 1995 Mar; 15(3 Pt 2):2123-40. PubMed ID: 7891156
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calcium imaging of rhythmic network activity in the developing spinal cord of the chick embryo.
    O'Donovan M; Ho S; Yee W
    J Neurosci; 1994 Nov; 14(11 Pt 1):6354-69. PubMed ID: 7965041
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characteristics of the electrical oscillations evoked by 4-aminopyridine on dorsal root fibers and their relation to fictive locomotor patterns in the rat spinal cord in vitro.
    Taccola G; Nistri A
    Neuroscience; 2005; 132(4):1187-97. PubMed ID: 15857720
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of spinal reflexes in the rat fetus studied in vitro.
    Saito K
    J Physiol; 1979 Sep; 294():581-94. PubMed ID: 512959
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optical determination of impulse conduction velocity during development of embryonic chick cervical vagus nerve bundles.
    Sakai T; Komuro H; Katoh Y; Sasaki H; Momose-Sato Y; Kamino K
    J Physiol; 1991 Aug; 439():361-81. PubMed ID: 1895241
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regionalization and intersegmental coordination of rhythm-generating networks in the spinal cord of the chick embryo.
    Ho S; O'Donovan MJ
    J Neurosci; 1993 Apr; 13(4):1354-71. PubMed ID: 8463824
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Developmental reorganization of the output of a GABAergic interneuronal circuit.
    Xu H; Clement A; Wright TM; Wenner P
    J Neurophysiol; 2007 Apr; 97(4):2769-79. PubMed ID: 17251359
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Voltage-sensitive dye recording using retrogradely transported dye in the chicken spinal cord: staining and signal characteristics.
    Wenner P; Tsau Y; Cohen LB; O'Donovan MJ; Dan Y
    J Neurosci Methods; 1996 Dec; 70(2):111-20. PubMed ID: 9007750
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Properties of rhythmic activity generated by the isolated spinal cord of the neonatal mouse.
    Whelan P; Bonnot A; O'Donovan MJ
    J Neurophysiol; 2000 Dec; 84(6):2821-33. PubMed ID: 11110812
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optical approaches to functional organization of glossopharyngeal and vagal motor nuclei in the embryonic chick hindbrain.
    Sato K; Mochida H; Yazawa I; Sasaki S; Momose-Sato Y
    J Neurophysiol; 2002 Jul; 88(1):383-93. PubMed ID: 12091562
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanisms that initiate spontaneous network activity in the developing chick spinal cord.
    Wenner P; O'Donovan MJ
    J Neurophysiol; 2001 Sep; 86(3):1481-98. PubMed ID: 11535692
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synaptic blockade plays a major role in the neural disturbance of experimental spinal cord compression.
    Yoshida H; Okada Y; Maruiwa H; Fukuda K; Nakamura M; Chiba K; Toyama Y
    J Neurotrauma; 2003 Dec; 20(12):1365-76. PubMed ID: 14748984
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of functional synaptic connections in the auditory system visualized with optical recording: afferent-evoked activity is present from early stages.
    Momose-Sato Y; Glover JC; Sato K
    J Neurophysiol; 2006 Oct; 96(4):1949-62. PubMed ID: 16790599
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional development of the vagal and glossopharyngeal nerve-related nuclei in the embryonic rat brainstem: optical mapping with a voltage-sensitive dye.
    Momose-Sato Y; Nakamori T; Sato K
    Neuroscience; 2011 Sep; 192():781-92. PubMed ID: 21718760
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optical analysis of depolarization waves in the embryonic brain: a dual network of gap junctions and chemical synapses.
    Momose-Sato Y; Miyakawa N; Mochida H; Sasaki S; Sato K
    J Neurophysiol; 2003 Jan; 89(1):600-14. PubMed ID: 12522205
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dorsal horn projection targets of ON and OFF cells in the rostral ventromedial medulla.
    Fields HL; Malick A; Burstein R
    J Neurophysiol; 1995 Oct; 74(4):1742-59. PubMed ID: 8989409
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Epidural electrical stimulation of posterior structures of the human lumbosacral cord: 2. quantitative analysis by computer modeling.
    Rattay F; Minassian K; Dimitrijevic MR
    Spinal Cord; 2000 Aug; 38(8):473-89. PubMed ID: 10962608
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatial and temporal patterns of evoked neural activity from auditory nuclei in chick brainstem detected by optical recording.
    Asako M; Doi T; Matsumoto A; Yang SM; Yamashita T
    Acta Otolaryngol; 1999; 119(8):900-4. PubMed ID: 10728931
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of an inhibitory interneuronal circuit in the embryonic spinal cord.
    Xu H; Whelan PJ; Wenner P
    J Neurophysiol; 2005 May; 93(5):2922-33. PubMed ID: 15574794
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.