These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 10200224)

  • 41. Regenerated dorsal root fibers form functional synapses in embryonic spinal cord transplants.
    Itoh Y; Waldeck RF; Tessler A; Pinter MJ
    J Neurophysiol; 1996 Aug; 76(2):1236-45. PubMed ID: 8871233
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Depression of postsynaptic potentials by high-frequency stimulation in embryonic motoneurons grown in spinal cord slice cultures.
    Streit J; Lüscher C; Lüscher HR
    J Neurophysiol; 1992 Nov; 68(5):1793-803. PubMed ID: 1479445
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The development of hindlimb motor activity studied in the isolated spinal cord of the chick embryo.
    O'Donovan MJ; Landmesser L
    J Neurosci; 1987 Oct; 7(10):3256-64. PubMed ID: 3668626
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Changes in serotonin-induced potentials during spinal cord development.
    Ziskind-Conhaim L; Seebach BS; Gao BX
    J Neurophysiol; 1993 Apr; 69(4):1338-49. PubMed ID: 8388043
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optical mapping of neural responses in the embryonic rat brainstem with reference to the early functional organization of vagal nuclei.
    Sato K; Momose-Sato Y; Hirota A; Sakai T; Kamino K
    J Neurosci; 1998 Feb; 18(4):1345-62. PubMed ID: 9454844
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Repetitive stimulation induced potentiation of excitatory transmission in the rat dorsal horn: an in vitro study.
    Jeftinija S; Urban L
    J Neurophysiol; 1994 Jan; 71(1):216-28. PubMed ID: 7908954
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ischemia-induced disturbance of neuronal network function in the rat spinal cord analyzed by voltage-imaging.
    Fukuda K; Okada Y; Yoshida H; Aoyama R; Nakamura M; Chiba K; Toyama Y
    Neuroscience; 2006 Jul; 140(4):1453-65. PubMed ID: 16675139
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Distribution of respiration-related neuronal activity in the thoracic spinal cord of the neonatal rat: An optical imaging study.
    Iizuka M; Onimaru H; Izumizaki M
    Neuroscience; 2016 Feb; 315():217-27. PubMed ID: 26704634
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord.
    Sasaki S; Yazawa I; Miyakawa N; Mochida H; Shinomiya K; Kamino K; Momose-Sato Y; Sato K
    Neuroimage; 2002 Nov; 17(3):1240-55. PubMed ID: 12414264
    [TBL] [Abstract][Full Text] [Related]  

  • 50. First step of selective motoneuron axonal growth: selective outgrowth at discrete sites in the spinal cord.
    Tanaka H
    J Comp Neurol; 1991 Jan; 303(2):329-37. PubMed ID: 2013644
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Excitatory postsynaptic potentials evoked by ventral root stimulation in neonate rat motoneurons in vitro.
    Jiang ZG; Shen E; Wang MY; Dun NJ
    J Neurophysiol; 1991 Jan; 65(1):57-66. PubMed ID: 1999732
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dorsal root potentials and changes in extracellular potassium in the spinal cord of the frog.
    Nicoll RA
    J Physiol; 1979 May; 290(2):113-27. PubMed ID: 224169
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Development of vagal afferent projections circumflex to the obex in the embryonic chick brainstem visualized with voltage-sensitive dye recording.
    Momose-Sato Y; Kinoshita M; Sato K
    Neuroscience; 2007 Aug; 148(1):140-50. PubMed ID: 17629626
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optical analysis of developmental changes in synaptic potentiation in the neonatal rat corticostriatal projection.
    Mullah SH; Inaji M; Nariai T; Momose-Sato Y; Sato K; Ohno K
    Neuroscience; 2012 Jan; 201():338-48. PubMed ID: 22119638
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sensory-evoked pocket scratch motor patterns in the in vitro turtle spinal cord: reduction of excitability by an N-methyl-D-aspartate antagonist.
    Currie SN; Lee S
    J Neurophysiol; 1996 Jul; 76(1):81-92. PubMed ID: 8836211
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Activation of dorsal horn cells by ventral root stimulation in the cat.
    Chung JM; Lee KH; Kim J; Coggeshall RE
    J Neurophysiol; 1985 Aug; 54(2):261-72. PubMed ID: 4031987
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In vitro sacral cord preparation and motoneuron recording from adult mice.
    Jiang MC; Heckman CJ
    J Neurosci Methods; 2006 Sep; 156(1-2):31-6. PubMed ID: 16574242
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Firing of spinal motoneurones due to electrical interaction in the rat: an in vitro study.
    Arasaki K; Kudo N; Nakanishi T
    Exp Brain Res; 1984; 54(3):437-45. PubMed ID: 6723863
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Topographical and physiological characterization of interneurons that express engrailed-1 in the embryonic chick spinal cord.
    Wenner P; O'Donovan MJ; Matise MP
    J Neurophysiol; 2000 Nov; 84(5):2651-7. PubMed ID: 11068006
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optical and electrophysiological recordings of corticospinal synaptic activity and its developmental change in in vitro rat slice co-cultures.
    Maeda H; Ohno T; Sakurai M
    Neuroscience; 2007 Dec; 150(4):829-40. PubMed ID: 18022322
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.