These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 10200225)

  • 21. Comparison of visual receptive fields in the dorsolateral prefrontal cortex and ventral intraparietal area in macaques.
    Viswanathan P; Nieder A
    Eur J Neurosci; 2017 Dec; 46(11):2702-2712. PubMed ID: 29044804
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanisms of dopamine activation of fast-spiking interneurons that exert inhibition in rat prefrontal cortex.
    Gorelova N; Seamans JK; Yang CR
    J Neurophysiol; 2002 Dec; 88(6):3150-66. PubMed ID: 12466437
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distinct Roles of Parvalbumin- and Somatostatin-Expressing Interneurons in Working Memory.
    Kim D; Jeong H; Lee J; Ghim JW; Her ES; Lee SH; Jung MW
    Neuron; 2016 Nov; 92(4):902-915. PubMed ID: 27746132
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Increased action potential firing rates of layer 2/3 pyramidal cells in the prefrontal cortex are significantly related to cognitive performance in aged monkeys.
    Chang YM; Rosene DL; Killiany RJ; Mangiamele LA; Luebke JI
    Cereb Cortex; 2005 Apr; 15(4):409-18. PubMed ID: 15749985
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Correlated discharges in the primate prefrontal cortex before and after working memory training.
    Qi XL; Constantinidis C
    Eur J Neurosci; 2012 Dec; 36(11):3538-48. PubMed ID: 22934919
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional impact of interneuronal inhibition in the cerebral cortex of behaving animals.
    Merchant H; de Lafuente V; Peña-Ortega F; Larriva-Sahd J
    Prog Neurobiol; 2012 Nov; 99(2):163-78. PubMed ID: 22960789
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 5-HT1A receptor agonists enhance pyramidal cell firing in prefrontal cortex through a preferential action on GABA interneurons.
    Lladó-Pelfort L; Santana N; Ghisi V; Artigas F; Celada P
    Cereb Cortex; 2012 Jul; 22(7):1487-97. PubMed ID: 21893679
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional synergism between putative gamma-aminobutyrate-containing neurons and pyramidal neurons in prefrontal cortex.
    Wilson FA; O'Scalaidhe SP; Goldman-Rakic PS
    Proc Natl Acad Sci U S A; 1994 Apr; 91(9):4009-13. PubMed ID: 8171027
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dopaminergic modulation of short-term synaptic plasticity in fast-spiking interneurons of primate dorsolateral prefrontal cortex.
    Gonzalez-Burgos G; Kroener S; Seamans JK; Lewis DA; Barrionuevo G
    J Neurophysiol; 2005 Dec; 94(6):4168-77. PubMed ID: 16148267
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory.
    Wang XJ; Tegnér J; Constantinidis C; Goldman-Rakic PS
    Proc Natl Acad Sci U S A; 2004 Feb; 101(5):1368-73. PubMed ID: 14742867
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex.
    Durstewitz D; Seamans JK; Sejnowski TJ
    J Neurophysiol; 2000 Mar; 83(3):1733-50. PubMed ID: 10712493
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prefrontal task-related activity representing visual cue location or saccade direction in spatial working memory tasks.
    Takeda K; Funahashi S
    J Neurophysiol; 2002 Jan; 87(1):567-88. PubMed ID: 11784772
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lack of orientation and direction selectivity in a subgroup of fast-spiking inhibitory interneurons: cellular and synaptic mechanisms and comparison with other electrophysiological cell types.
    Nowak LG; Sanchez-Vives MV; McCormick DA
    Cereb Cortex; 2008 May; 18(5):1058-78. PubMed ID: 17720684
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Common rules guide comparisons of speed and direction of motion in the dorsolateral prefrontal cortex.
    Hussar CR; Pasternak T
    J Neurosci; 2013 Jan; 33(3):972-86. PubMed ID: 23325236
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Monkey prefrontal cortical pyramidal and putative interneurons exhibit differential patterns of activity between prosaccade and antisaccade tasks.
    Johnston K; DeSouza JF; Everling S
    J Neurosci; 2009 Apr; 29(17):5516-24. PubMed ID: 19403819
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distributed representations of temporal stimulus associations across regular-firing and fast-spiking neurons in rat medial prefrontal cortex.
    Xing B; Morrissey MD; Takehara-Nishiuchi K
    J Neurophysiol; 2020 Jan; 123(1):439-450. PubMed ID: 31851558
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coding specificity in cortical microcircuits: a multiple-electrode analysis of primate prefrontal cortex.
    Constantinidis C; Franowicz MN; Goldman-Rakic PS
    J Neurosci; 2001 May; 21(10):3646-55. PubMed ID: 11331394
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Properties of delay-period neuronal activity in the monkey dorsolateral prefrontal cortex during a spatial delayed matching-to-sample task.
    Sawaguchi T; Yamane I
    J Neurophysiol; 1999 Nov; 82(5):2070-80. PubMed ID: 10561388
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Copula regression analysis of simultaneously recorded frontal eye field and inferotemporal spiking activity during object-based working memory.
    Hu M; Clark KL; Gong X; Noudoost B; Li M; Moore T; Liang H
    J Neurosci; 2015 Jun; 35(23):8745-57. PubMed ID: 26063909
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Head-Directional Tuning and Theta Modulation of Anatomically Identified Neurons in the Presubiculum.
    Tukker JJ; Tang Q; Burgalossi A; Brecht M
    J Neurosci; 2015 Nov; 35(46):15391-5. PubMed ID: 26586825
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.