These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 10200229)

  • 1. Developmental aspects and mechanisms of rat caudal hypothalamic neuronal responses to hypoxia.
    Horn EM; Dillon GH; Fan YP; Waldrop TG
    J Neurophysiol; 1999 Apr; 81(4):1949-59. PubMed ID: 10200229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biophysical characterization of rat caudal hypothalamic neurons: calcium channel contribution to excitability.
    Fan YP; Horn EM; Waldrop TG
    J Neurophysiol; 2000 Dec; 84(6):2896-903. PubMed ID: 11110819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypoxic augmentation of fast-inactivating and persistent sodium currents in rat caudal hypothalamic neurons.
    Horn EM; Waldrop TG
    J Neurophysiol; 2000 Nov; 84(5):2572-81. PubMed ID: 11067999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro responses of caudal hypothalamic neurons to hypoxia and hypercapnia.
    Dillon GH; Waldrop TG
    Neuroscience; 1992 Dec; 51(4):941-50. PubMed ID: 1336828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen-sensing neurons in the caudal hypothalamus and their role in cardiorespiratory control.
    Horn EM; Waldrop TG
    Respir Physiol; 1997 Nov; 110(2-3):219-28. PubMed ID: 9407614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of hypoxia-induced Fos expression in rat caudal hypothalamic neurons.
    Horn EM; Kramer JM; Waldrop TG
    Neuroscience; 2000; 99(4):711-20. PubMed ID: 10974434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane properties underlying patterns of GABA-dependent action potentials in developing mouse hypothalamic neurons.
    Wang YF; Gao XB; van den Pol AN
    J Neurophysiol; 2001 Sep; 86(3):1252-65. PubMed ID: 11535674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of the respiratory responses to hypoxia and hypercapnia by synaptic input onto caudal hypothalamic neurons.
    Horn EM; Waldrop TG
    Brain Res; 1994 Nov; 664(1-2):25-33. PubMed ID: 7895038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ventrolateral medullary neurons show age-dependent depolarizations to hypoxia in vitro.
    Nolan PC; Waldrop TG
    Brain Res Dev Brain Res; 1996 Jan; 91(1):111-20. PubMed ID: 8821482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dopamine inhibition: enhancement of GABA activity and potassium channel activation in hypothalamic and arcuate nucleus neurons.
    Belousov AB; van den Pol AN
    J Neurophysiol; 1997 Aug; 78(2):674-88. PubMed ID: 9307104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms for signal transformation in lemniscal auditory thalamus.
    Tennigkeit F; Schwarz DW; Puil E
    J Neurophysiol; 1996 Dec; 76(6):3597-608. PubMed ID: 8985860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dopamine enhancement and depression of glutamate-regulated calcium and electrical activity in hypothalamic neurons.
    van den Pol AN; Cao V; Belousov AB
    J Neurophysiol; 1996 Dec; 76(6):3934-48. PubMed ID: 8985891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biophysical characterization of whole-cell currents in O2-sensitive neurons from the rat glossopharyngeal nerve.
    Campanucci VA; Nurse CA
    Neuroscience; 2005; 132(2):437-51. PubMed ID: 15802195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Angiotensin II excites paraventricular nucleus neurons that innervate the rostral ventrolateral medulla: an in vitro patch-clamp study in brain slices.
    Cato MJ; Toney GM
    J Neurophysiol; 2005 Jan; 93(1):403-13. PubMed ID: 15356186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium conductances and their role in the firing behavior of neonatal rat hypoglossal motoneurons.
    Viana F; Bayliss DA; Berger AJ
    J Neurophysiol; 1993 Jun; 69(6):2137-49. PubMed ID: 8394413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the mechanisms underlying hypoxia-induced membrane depolarization in striatal neurons.
    Calabresi P; Pisani A; Mercuri NB; Bernardi G
    Brain; 1995 Aug; 118 ( Pt 4)():1027-38. PubMed ID: 7655879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. O2 deprivation induces a major depolarization in brain stem neurons in the adult but not in the neonatal rat.
    Haddad GG; Donnelly DF
    J Physiol; 1990 Oct; 429():411-28. PubMed ID: 2126043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of multiple potassium currents by metabotropic glutamate receptors in neurons of the hypothalamic supraoptic nucleus.
    Schrader LA; Tasker JG
    J Neurophysiol; 1997 Dec; 78(6):3428-37. PubMed ID: 9405556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypoxic excitation in neurons cultured from the rostral ventrolateral medulla of the neonatal rat.
    Mazza E; Edelman NH; Neubauer JA
    J Appl Physiol (1985); 2000 Jun; 88(6):2319-29. PubMed ID: 10846051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypoxia-activated Ca2+ currents in pacemaker neurones of rat rostral ventrolateral medulla in vitro.
    Sun MK; Reis DJ
    J Physiol; 1994 Apr; 476(1):101-16. PubMed ID: 8046626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.