These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 10200402)

  • 1. Center of gravity dynamic stability in normal and vestibulopathic gait.
    Tucker CA; Ramirez J; Krebs DE; Riley PO
    Gait Posture; 1998 Oct; 8(2):117-123. PubMed ID: 10200402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Head and body center of gravity control strategies: adaptations following vestibular rehabilitation.
    Patten C; Horak FB; Krebs DE
    Acta Otolaryngol; 2003 Jan; 123(1):32-40. PubMed ID: 12625570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is base of support greater in unsteady gait?
    Krebs DE; Goldvasser D; Lockert JD; Portney LG; Gill-Body KM
    Phys Ther; 2002 Feb; 82(2):138-47. PubMed ID: 11856065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The 3-D motion of the centre of gravity of the human body during level walking. I. Normal subjects at low and intermediate walking speeds.
    Tesio L; Lanzi D; Detrembleur C
    Clin Biomech (Bristol, Avon); 1998 Mar; 13(2):77-82. PubMed ID: 11415774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gaze stabilization during dynamic posturography in normal and vestibulopathic humans.
    Crane BT; Demer JL
    Exp Brain Res; 1998 Sep; 122(2):235-46. PubMed ID: 9776522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of age and functional limitation on leg joint power and work during stance phase of gait.
    McGibbon CA; Krebs DE
    J Rehabil Res Dev; 1999 Jul; 36(3):173-82. PubMed ID: 10659800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tai Chi and vestibular rehabilitation improve vestibulopathic gait via different neuromuscular mechanisms: preliminary report.
    McGibbon CA; Krebs DE; Parker SW; Scarborough DM; Wayne PM; Wolf SL
    BMC Neurol; 2005 Feb; 5(1):3. PubMed ID: 15717934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frontal plane dynamic stability and coordination in subjects with cerebellar degeneration.
    Hudson CC; Krebs DE
    Exp Brain Res; 2000 May; 132(1):103-13. PubMed ID: 10836640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The 3-D motion of the centre of gravity of the human body during level walking. II. Lower limb amputees.
    Tesio L; Lanzi D; Detrembleur C
    Clin Biomech (Bristol, Avon); 1998 Mar; 13(2):83-90. PubMed ID: 11415775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic balance control in elders: gait initiation assessment as a screening tool.
    Chang H; Krebs DE
    Arch Phys Med Rehabil; 1999 May; 80(5):490-4. PubMed ID: 10326909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alteration in the center of mass trajectory of patients after stroke.
    do Carmo AA; Kleiner AF; Barros RM
    Top Stroke Rehabil; 2015 Oct; 22(5):349-56. PubMed ID: 25906834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The 3-dimensional kinematics of the walking gait cycle of children aged between 10 and 24 months: cross sectional and repeated measures.
    Grimshaw PN; Marques-Bruna P; Salo A; Messenger N
    Gait Posture; 1998 Jan; 7(1):7-15. PubMed ID: 10200371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of kinematic-based gait event detection methods in a self-paced treadmill application.
    Hendershot BD; Mahon CE; Pruziner AL
    J Biomech; 2016 Dec; 49(16):4146-4149. PubMed ID: 27825601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of head- and body-velocity trajectories during locomotion among healthy and vestibulopathic subjects.
    Cavanaugh JT; Goldvasser D; McGibbon CA; Krebs DE
    J Rehabil Res Dev; 2005; 42(2):191-8. PubMed ID: 15944884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery times of stance and gait balance control after an acute unilateral peripheral vestibular deficit.
    Allum JH; Honegger F
    J Vestib Res; 2016; 25(5-6):219-31. PubMed ID: 26890423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of stance-phase knee flexion on the vertical displacement of the trunk during normal walking.
    Gard SA; Childress DS
    Arch Phys Med Rehabil; 1999 Jan; 80(1):26-32. PubMed ID: 9915368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase plane analysis of stability in quiet standing.
    Riley PO; Benda BJ; Gill-Body KM; Krebs DE
    J Rehabil Res Dev; 1995 Oct; 32(3):227-35. PubMed ID: 8592294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of vertical components of gait during initiation of walking in normal adults and patients with progressive supranuclear palsy.
    Welter ML; Do MC; Chastan N; Torny F; Bloch F; du Montcel ST; Agid Y
    Gait Posture; 2007 Sep; 26(3):393-9. PubMed ID: 17126017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for a common process in gait initiation and stepping on to a new level to reach gait velocity.
    Gélat T; Pellec AL; Brenière Y
    Exp Brain Res; 2006 Apr; 170(3):336-44. PubMed ID: 16328272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.