These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 10204889)

  • 1. Magnetic resonance imaging of frozen tissues: temperature-dependent MR signal characteristics and relevance for MR monitoring of cryosurgery.
    Daniel BL; Butts K; Block WF
    Magn Reson Med; 1999 Mar; 41(3):627-30. PubMed ID: 10204889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature-Sensitive Frozen-Tissue Imaging for Cryoablation Monitoring Using STIR-UTE MRI.
    Tokuda J; Wang Q; Tuncali K; Seethamraju RT; Tempany CM; Schmidt EJ
    Invest Radiol; 2020 May; 55(5):310-317. PubMed ID: 31977600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D MR thermometry of frozen tissue: Feasibility and accuracy during cryoablation at 3T.
    Overduin CG; Fütterer JJ; Scheenen TW
    J Magn Reson Imaging; 2016 Dec; 44(6):1572-1579. PubMed ID: 27160336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature quantitation and mapping of frozen tissue.
    Butts K; Sinclair J; Daniel BL; Wansapura J; Pauly JM
    J Magn Reson Imaging; 2001 Jan; 13(1):99-104. PubMed ID: 11169810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring of laser and freezing-induced ablation in the liver with T1-weighted MR imaging.
    Matsumoto R; Oshio K; Jolesz FA
    J Magn Reson Imaging; 1992; 2(5):555-62. PubMed ID: 1392248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature mapping of frozen tissue using eddy current compensated half excitation RF pulses.
    Wansapura JP; Daniel BL; Pauly J; Butts K
    Magn Reson Med; 2001 Nov; 46(5):985-92. PubMed ID: 11675651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature determination in the frozen region during cryosurgery of rabbit liver using MR image analysis.
    Gilbert JC; Rubinsky B; Wong ST; Brennan KM; Pease GR; Leung PP
    Magn Reson Imaging; 1997; 15(6):657-67. PubMed ID: 9285805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of view angle tilting to reduce distortions in magnetic resonance imaging of cryosurgery.
    Daniel BL; Butts K
    Magn Reson Imaging; 2000 Apr; 18(3):281-6. PubMed ID: 10745137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of sub-zero temperatures in MRI using T
    Hankiewicz JH; Celinski Z; Camley RE
    Med Phys; 2021 Nov; 48(11):6844-6858. PubMed ID: 34562287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MRI of frozen tissue demonstrates a phase shift.
    Lu A; Daniel BL; Kaye E; Butts Pauly K
    Magn Reson Med; 2011 Dec; 66(6):1582-9. PubMed ID: 21630347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A liver-mimicking MRI phantom for thermal ablation experiments.
    Bazrafshan B; Hübner F; Farshid P; Larson MC; Vogel V; Mäntele W; Vogl TJ
    Med Phys; 2011 May; 38(5):2674-84. PubMed ID: 21776804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Sequential MRI and CT monitoring in cryosurgery--an experimental study in polyvinyl alcohol gel phantom].
    Isoda H
    Nihon Igaku Hoshasen Gakkai Zasshi; 1989 Sep; 49(9):1096-101. PubMed ID: 2587192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. T1 and T2 temperature dependence of female human breast adipose tissue at 1.5 T: groundwork for monitoring thermal therapies in the breast.
    Baron P; Deckers R; Knuttel FM; Bartels LW
    NMR Biomed; 2015 Nov; 28(11):1463-70. PubMed ID: 26403166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. T1-weighted MR image contrast around a cryoablation iceball: a phantom study and initial comparison with in vivo findings.
    Overduin CG; Bomers JG; Jenniskens SF; Hoes MF; Ten Haken B; de Lange F; Fütterer JJ; Scheenen TW
    Med Phys; 2014 Nov; 41(11):112301. PubMed ID: 25370657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Sequential MRI and CT monitoring in cryosurgery--an experimental study in rats].
    Isoda H
    Nihon Igaku Hoshasen Gakkai Zasshi; 1989 Dec; 49(12):1499-508. PubMed ID: 2633129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Consistency of signal intensity and T2* in frozen ex vivo heart muscle, kidney, and liver tissue.
    Kaye EA; Josan S; Lu A; Rosenberg J; Daniel BL; Pauly KB
    J Magn Reson Imaging; 2010 Mar; 31(3):719-24. PubMed ID: 20187218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo MR thermometry of frozen tissue using R2* and signal intensity.
    Wansapura JP; Daniel BL; Vigen KK; Butts K
    Acad Radiol; 2005 Sep; 12(9):1080-4. PubMed ID: 16112510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging of interstitial cryotherapy--an in vitro comparison of ultrasound, computed tomography, and magnetic resonance imaging.
    Tacke J; Speetzen R; Heschel I; Hunter DW; Rau G; Günther RW
    Cryobiology; 1999 May; 38(3):250-9. PubMed ID: 10328915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radio-frequency-induced thermoablation: monitoring with T1-weighted and proton-frequency-shift MR imaging in an interventional 0.5-T environment.
    Steiner P; Botnar R; Dubno B; Zimmermann GG; Gazelle GS; Debatin JF
    Radiology; 1998 Mar; 206(3):803-10. PubMed ID: 9494505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An analytic method to predict the thermal map of cryosurgery iceballs in MR images.
    Fournial R; Traoré AS; Laurendeau D; Moisan C
    IEEE Trans Med Imaging; 2004 Jan; 23(1):122-9. PubMed ID: 14719693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.