These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 10204990)

  • 1. Preparation of a biphasic porous bioceramic by heating bovine cancellous bone with Na4P2O7.10H2O addition.
    Lin FH; Liao CJ; Chen KS; Sun JS
    Biomaterials; 1999 Mar; 20(5):475-84. PubMed ID: 10204990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of betaTCP/HAP biphasic ceramics with natural bone structure by heating bovine cancellous bone with the addition of (NH(4))(2)HPO(4).
    Lin FH; Liao CJ; Chen KS; Sun JS; Lin CY
    J Biomed Mater Res; 2000 Aug; 51(2):157-63. PubMed ID: 10825214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of high-temperature stabilized beta-tricalcium phosphate by heating deficient hydroxyapatite with Na4P2O7 x 10H2O addition.
    Lin FH; Liao CJ; Chen KS; Sun JS
    Biomaterials; 1998 Jun; 19(11-12):1101-7. PubMed ID: 9692809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of cyclic heat treatment on the physicochemical properties of bio hydroxyapatite from bovine bone.
    Londoño-Restrepo SM; Jeronimo-Cruz R; Rubio-Rosas E; Rodriguez-García ME
    J Mater Sci Mater Med; 2018 May; 29(5):52. PubMed ID: 29721617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Transforming the sintered ostrich cancellous bone to multiphasic calcium phosphate ceramic].
    Yang YW; Mao TQ; Sun MY; Chen FL; Chen SJ; Yang C
    Shanghai Kou Qiang Yi Xue; 2003 Aug; 12(4):277-80. PubMed ID: 14966641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal decomposition and reconstruction of hydroxyapatite in air atmosphere.
    Liao CJ; Lin FH; Chen KS; Sun JS
    Biomed Sci Instrum; 1999; 35():99-104. PubMed ID: 11143400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cu-doping of calcium phosphate bioceramics: From mechanism to the control of cytotoxicity.
    Gomes S; Vichery C; Descamps S; Martinez H; Kaur A; Jacobs A; Nedelec JM; Renaudin G
    Acta Biomater; 2018 Jan; 65():462-474. PubMed ID: 29066420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Synthesis and characteristics of porous hydroxyapatite bioceramics].
    Niu J; Zhang Z; Jiang D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Jun; 19(2):302-5. PubMed ID: 12224306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of hydroxyapatite from animal bones.
    Sobczak A; Kowalski Z; Wzorek Z
    Acta Bioeng Biomech; 2009; 11(4):23-8. PubMed ID: 20405812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere.
    Liao CJ; Lin FH; Chen KS; Sun JS
    Biomaterials; 1999 Oct; 20(19):1807-13. PubMed ID: 10509191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical and physicochemical characterization of porous hydroxyapatite ceramics made of natural bone.
    Joschek S; Nies B; Krotz R; Göferich A
    Biomaterials; 2000 Aug; 21(16):1645-58. PubMed ID: 10905406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of biphasic calcium phosphate (BCP) ceramics of tilapia fish bones by age.
    da Cruz JA; Pezarini RR; Sales AJM; Benjamin SR; de Oliveira Silva PM; Graça MPF
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Aug; 316():124289. PubMed ID: 38692101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of sintering temperature over 1,300 degrees C on the physical and compositional properties of porous hydroxyapatite foam.
    Munar ML; Udoh K; Ishikawa K; Matsuya S; Nakagawa M
    Dent Mater J; 2006 Mar; 25(1):51-8. PubMed ID: 16706297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The drug release study of ceftriaxone from porous hydroxyapatite scaffolds.
    Al-Sokanee ZN; Toabi AA; Al-Assadi MJ; Alassadi EA
    AAPS PharmSciTech; 2009; 10(3):772-9. PubMed ID: 19499343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suitability evaluation of sol-gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response.
    Balamurugan A; Rebelo AH; Lemos AF; Rocha JH; Ventura JM; Ferreira JM
    Dent Mater; 2008 Oct; 24(10):1374-80. PubMed ID: 18417203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and characterization of porous apatite ceramics coated with beta-tricalcium phosphate.
    Ioku K; Yanagisawa K; Yamasaki N; Kurosawa H; Shibuya K; Yokozeki H
    Biomed Mater Eng; 1993; 3(3):137-45. PubMed ID: 8193565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioactivity and mineralization of natural hydroxyapatite from cuttlefish bone and Bioglass
    Cozza N; Monte F; Bonani W; Aswath P; Motta A; Migliaresi C
    J Tissue Eng Regen Med; 2018 Feb; 12(2):e1131-e1142. PubMed ID: 28500666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation and bioabsorption innovation of the functionally graded bovine bone-originated apatite with blood permeability.
    Akazawa T; Murata M; Sasaki T; Tazaki J; Kobayashi M; Kanno T; Nakamura K; Arisue M
    J Biomed Mater Res A; 2006 Jan; 76(1):44-51. PubMed ID: 16206265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioactive ceramic composites sintered from hydroxyapatite and silica at 1,200 degrees C: preparation, microstructures and in vitro bone-like layer growth.
    Li XW; Yasuda HY; Umakoshi Y
    J Mater Sci Mater Med; 2006 Jun; 17(6):573-81. PubMed ID: 16691357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cooling rate effects on thermal, structural, and microstructural properties of bio-hydroxyapatite obtained from bovine bone.
    Ramirez-Gutierrez CF; Palechor-Ocampo AF; Londoño-Restrepo SM; Millán-Malo BM; Rodriguez-García ME
    J Biomed Mater Res B Appl Biomater; 2016 Feb; 104(2):339-44. PubMed ID: 25952013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.