These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

577 related articles for article (PubMed ID: 10205061)

  • 1. Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors.
    Freedman MS; Lucas RJ; Soni B; von Schantz M; Muñoz M; David-Gray Z; Foster R
    Science; 1999 Apr; 284(5413):502-4. PubMed ID: 10205061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors.
    Lucas RJ; Freedman MS; Muñoz M; Garcia-Fernández JM; Foster RG
    Science; 1999 Apr; 284(5413):505-7. PubMed ID: 10205062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Residual photosensitivity in mice lacking both rod opsin and cone photoreceptor cyclic nucleotide gated channel 3 alpha subunit.
    Barnard AR; Appleford JM; Sekaran S; Chinthapalli K; Jenkins A; Seeliger M; Biel M; Humphries P; Douglas RH; Wenzel A; Foster RG; Hankins MW; Lucas RJ
    Vis Neurosci; 2004; 21(5):675-83. PubMed ID: 15683556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of an ocular photopigment capable of driving pupillary constriction in mice.
    Lucas RJ; Douglas RH; Foster RG
    Nat Neurosci; 2001 Jun; 4(6):621-6. PubMed ID: 11369943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rod photoreceptors drive circadian photoentrainment across a wide range of light intensities.
    Altimus CM; Güler AD; Alam NM; Arman AC; Prusky GT; Sampath AP; Hattar S
    Nat Neurosci; 2010 Sep; 13(9):1107-12. PubMed ID: 20711184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transgenic ablation of rod photoreceptors alters the circadian phenotype of mice.
    Lupi D; Cooper HM; Froehlich A; Standford L; McCall MA; Foster RG
    Neuroscience; 1999 Mar; 89(2):363-74. PubMed ID: 10077319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circadian photoreception in vertebrates.
    Doyle S; Menaker M
    Cold Spring Harb Symp Quant Biol; 2007; 72():499-508. PubMed ID: 18419310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inner retinal photoreceptors (IRPs) in mammals and teleost fish.
    Foster RG; Bellingham J
    Photochem Photobiol Sci; 2004 Jun; 3(6):617-27. PubMed ID: 15170494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How rod, cone, and melanopsin photoreceptors come together to enlighten the mammalian circadian clock.
    Lucas RJ; Lall GS; Allen AE; Brown TM
    Prog Brain Res; 2012; 199():1-18. PubMed ID: 22877656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cones are required for normal temporal responses to light of phase shifts and clock gene expression.
    Dollet A; Albrecht U; Cooper HM; Dkhissi-Benyahya O
    Chronobiol Int; 2010 Jun; 27(4):768-81. PubMed ID: 20560710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dopamine mediates circadian clock regulation of rod and cone input to fish retinal horizontal cells.
    Ribelayga C; Wang Y; Mangel SC
    J Physiol; 2002 Nov; 544(3):801-16. PubMed ID: 12411525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Irradiance encoding in the suprachiasmatic nuclei by rod and cone photoreceptors.
    van Diepen HC; Ramkisoensing A; Peirson SN; Foster RG; Meijer JH
    FASEB J; 2013 Oct; 27(10):4204-12. PubMed ID: 23796782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct contributions of rod, cone, and melanopsin photoreceptors to encoding irradiance.
    Lall GS; Revell VL; Momiji H; Al Enezi J; Altimus CM; Güler AD; Aguilar C; Cameron MA; Allender S; Hankins MW; Lucas RJ
    Neuron; 2010 May; 66(3):417-28. PubMed ID: 20471354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signaling properties of a short-wave cone visual pigment and its role in phototransduction.
    Shi G; Yau KW; Chen J; Kefalov VJ
    J Neurosci; 2007 Sep; 27(38):10084-93. PubMed ID: 17881515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local photic entrainment of the retinal circadian oscillator in the absence of rods, cones, and melanopsin.
    Buhr ED; Van Gelder RN
    Proc Natl Acad Sci U S A; 2014 Jun; 111(23):8625-30. PubMed ID: 24843129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circadian Regulation of the Rod Contribution to Mesopic Vision in Mice.
    Allen AE
    J Neurosci; 2022 Nov; 42(47):8795-8806. PubMed ID: 36216501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-rod, non-cone photoreception in the vertebrates.
    Foster RG; Hankins MW
    Prog Retin Eye Res; 2002 Nov; 21(6):507-27. PubMed ID: 12433375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian rhythms. The clock plot thickens.
    Barinaga M
    Science; 1999 Apr; 284(5413):421-2. PubMed ID: 10232983
    [No Abstract]   [Full Text] [Related]  

  • 19. Light reception: discovering the clock-eye in mammals.
    Roenneberg T; Merrow M
    Curr Biol; 2002 Mar; 12(5):R163-5. PubMed ID: 11882303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photopigments and circadian systems of vertebrates.
    Argamaso SM; Froehlich AC; McCall MA; Nevo E; Provencio I; Foster RG
    Biophys Chem; 1995; 56(1-2):3-11. PubMed ID: 7662867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.