BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 10205163)

  • 1. Sequence determinants directing conversion of cysteine to formylglycine in eukaryotic sulfatases.
    Dierks T; Lecca MR; Schlotterhose P; Schmidt B; von Figura K
    EMBO J; 1999 Apr; 18(8):2084-91. PubMed ID: 10205163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Residues critical for formylglycine formation and/or catalytic activity of arylsulfatase A.
    Knaust A; Schmidt B; Dierks T; von Bülow R; von Figura K
    Biochemistry; 1998 Oct; 37(40):13941-6. PubMed ID: 9760228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion of cysteine to formylglycine: a protein modification in the endoplasmic reticulum.
    Dierks T; Schmidt B; von Figura K
    Proc Natl Acad Sci U S A; 1997 Oct; 94(22):11963-8. PubMed ID: 9342345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conversion of cysteine to formylglycine in eukaryotic sulfatases occurs by a common mechanism in the endoplasmic reticulum.
    Dierks T; Lecca MR; Schmidt B; von Figura K
    FEBS Lett; 1998 Feb; 423(1):61-5. PubMed ID: 9506842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel protein modification generating an aldehyde group in sulfatases: its role in catalysis and disease.
    von Figura K; Schmidt B; Selmer T; Dierks T
    Bioessays; 1998 Jun; 20(6):505-10. PubMed ID: 9699462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of an enzyme-substrate complex provides insight into the interaction between human arylsulfatase A and its substrates during catalysis.
    von Bülow R; Schmidt B; Dierks T; von Figura K; Usón I
    J Mol Biol; 2001 Jan; 305(2):269-77. PubMed ID: 11124905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eukaryotic formylglycine-generating enzyme catalyses a monooxygenase type of reaction.
    Peng J; Alam S; Radhakrishnan K; Mariappan M; Rudolph MG; May C; Dierks T; von Figura K; Schmidt B
    FEBS J; 2015 Sep; 282(17):3262-74. PubMed ID: 26077311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of formylglycine in sulfatases by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
    Peng J; Schmidt B; von Figura K; Dierks T
    J Mass Spectrom; 2003 Jan; 38(1):80-6. PubMed ID: 12526009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine.
    Dierks T; Miech C; Hummerjohann J; Schmidt B; Kertesz MA; von Figura K
    J Biol Chem; 1998 Oct; 273(40):25560-4. PubMed ID: 9748219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Posttranslational modification of serine to formylglycine in bacterial sulfatases. Recognition of the modification motif by the iron-sulfur protein AtsB.
    Marquordt C; Fang Q; Will E; Peng J; von Figura K; Dierks T
    J Biol Chem; 2003 Jan; 278(4):2212-8. PubMed ID: 12419807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfatases, trapping of the sulfated enzyme intermediate by substituting the active site formylglycine.
    Recksiek M; Selmer T; Dierks T; Schmidt B; von Figura K
    J Biol Chem; 1998 Mar; 273(11):6096-103. PubMed ID: 9497327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arylsulfatase from Klebsiella pneumoniae carries a formylglycine generated from a serine.
    Miech C; Dierks T; Selmer T; von Figura K; Schmidt B
    J Biol Chem; 1998 Feb; 273(9):4835-7. PubMed ID: 9478923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of posttranslational formylglycine formation by luminal components of the endoplasmic reticulum.
    Fey J; Balleininger M; Borissenko LV; Schmidt B; von Figura K; Dierks T
    J Biol Chem; 2001 Dec; 276(50):47021-8. PubMed ID: 11600503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A conserved motif in the yeast nucleolar protein Nop2p contains an essential cysteine residue.
    King M; Ton D; Redman KL
    Biochem J; 1999 Jan; 337 ( Pt 1)(Pt 1):29-35. PubMed ID: 9854021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular basis for multiple sulfatase deficiency and mechanism for formylglycine generation of the human formylglycine-generating enzyme.
    Dierks T; Dickmanns A; Preusser-Kunze A; Schmidt B; Mariappan M; von Figura K; Ficner R; Rudolph MG
    Cell; 2005 May; 121(4):541-552. PubMed ID: 15907468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The human SUMF1 gene, required for posttranslational sulfatase modification, defines a new gene family which is conserved from pro- to eukaryotes.
    Landgrebe J; Dierks T; Schmidt B; von Figura K
    Gene; 2003 Oct; 316():47-56. PubMed ID: 14563551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First evidences for a third sulfatase maturation system in prokaryotes from E. coli aslB and ydeM deletion mutants.
    Benjdia A; Dehò G; Rabot S; Berteau O
    FEBS Lett; 2007 Mar; 581(5):1009-14. PubMed ID: 17303125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional structures of sulfatases.
    Ghosh D
    Methods Enzymol; 2005; 400():273-93. PubMed ID: 16399355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning and characterization of two cDNAs encoding sulfatases in the Roman snail, Helix pomatia.
    Wittstock U; Fischer M; Svendsen I; Halkier BA
    IUBMB Life; 2000 Jan; 49(1):71-6. PubMed ID: 10772344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human sulfatases: a structural perspective to catalysis.
    Ghosh D
    Cell Mol Life Sci; 2007 Aug; 64(15):2013-22. PubMed ID: 17558559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.