These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 10205171)
1. Maintenance of G2 arrest in the Xenopus oocyte: a role for 14-3-3-mediated inhibition of Cdc25 nuclear import. Yang J; Winkler K; Yoshida M; Kornbluth S EMBO J; 1999 Apr; 18(8):2174-83. PubMed ID: 10205171 [TBL] [Abstract][Full Text] [Related]
2. Production of a soluble cyclin B/cdc2 substrate for cdc25 phosphatase. Clark JM; Gabrielli BG Anal Biochem; 1997 Dec; 254(2):231-5. PubMed ID: 9417782 [TBL] [Abstract][Full Text] [Related]
3. Phosphorylation and activation of the Xenopus Cdc25 phosphatase in the absence of Cdc2 and Cdk2 kinase activity. Izumi T; Maller JL Mol Biol Cell; 1995 Feb; 6(2):215-26. PubMed ID: 7787247 [TBL] [Abstract][Full Text] [Related]
4. PP1 control of M phase entry exerted through 14-3-3-regulated Cdc25 dephosphorylation. Margolis SS; Walsh S; Weiser DC; Yoshida M; Shenolikar S; Kornbluth S EMBO J; 2003 Nov; 22(21):5734-45. PubMed ID: 14592972 [TBL] [Abstract][Full Text] [Related]
5. MPF amplification in Xenopus oocyte extracts depends on a two-step activation of cdc25 phosphatase. Karaïskou A; Cayla X; Haccard O; Jessus C; Ozon R Exp Cell Res; 1998 Nov; 244(2):491-500. PubMed ID: 9806800 [TBL] [Abstract][Full Text] [Related]
6. Cdc2-cyclin B-induced G2 to M transition in perch oocyte is dependent on Cdc25. Basu D; Navneet AK; Dasgupta S; Bhattacharya S Biol Reprod; 2004 Sep; 71(3):894-900. PubMed ID: 15151934 [TBL] [Abstract][Full Text] [Related]
7. Mitotic progression becomes irreversible in prometaphase and collapses when Wee1 and Cdc25 are inhibited. Potapova TA; Sivakumar S; Flynn JN; Li R; Gorbsky GJ Mol Biol Cell; 2011 Apr; 22(8):1191-206. PubMed ID: 21325631 [TBL] [Abstract][Full Text] [Related]
8. Nuclear localization of Cdc25 is regulated by DNA damage and a 14-3-3 protein. Lopez-Girona A; Furnari B; Mondesert O; Russell P Nature; 1999 Jan; 397(6715):172-5. PubMed ID: 9923681 [TBL] [Abstract][Full Text] [Related]
9. Binding of 14-3-3 proteins and nuclear export control the intracellular localization of the mitotic inducer Cdc25. Kumagai A; Dunphy WG Genes Dev; 1999 May; 13(9):1067-72. PubMed ID: 10323858 [TBL] [Abstract][Full Text] [Related]
10. Induction of a G2-phase arrest in Xenopus egg extracts by activation of p42 mitogen-activated protein kinase. Walter SA; Guadagno TM; Ferrell JE Mol Biol Cell; 1997 Nov; 8(11):2157-69. PubMed ID: 9362060 [TBL] [Abstract][Full Text] [Related]
11. Activation of Cdc2 kinase during meiotic maturation of axolotl oocyte. Vaur S; Poulhe R; Maton G; Andéol Y; Jessus C Dev Biol; 2004 Mar; 267(2):265-78. PubMed ID: 15013793 [TBL] [Abstract][Full Text] [Related]
12. A p90(rsk) mutant constitutively interacting with MAP kinase uncouples MAP kinase from p34(cdc2)/cyclin B activation in Xenopus oocytes. Gavin AC; Ni Ainle A; Chierici E; Jones M; Nebreda AR Mol Biol Cell; 1999 Sep; 10(9):2971-86. PubMed ID: 10473640 [TBL] [Abstract][Full Text] [Related]
13. MPF localization is controlled by nuclear export. Hagting A; Karlsson C; Clute P; Jackman M; Pines J EMBO J; 1998 Jul; 17(14):4127-38. PubMed ID: 9670027 [TBL] [Abstract][Full Text] [Related]
14. Dephosphorylation of cdc25-C by a type-2A protein phosphatase: specific regulation during the cell cycle in Xenopus egg extracts. Clarke PR; Hoffmann I; Draetta G; Karsenti E Mol Biol Cell; 1993 Apr; 4(4):397-411. PubMed ID: 8389619 [TBL] [Abstract][Full Text] [Related]
15. Elimination of cdc2 phosphorylation sites in the cdc25 phosphatase blocks initiation of M-phase. Izumi T; Maller JL Mol Biol Cell; 1993 Dec; 4(12):1337-50. PubMed ID: 7513216 [TBL] [Abstract][Full Text] [Related]
16. A link between MAP kinase and p34(cdc2)/cyclin B during oocyte maturation: p90(rsk) phosphorylates and inactivates the p34(cdc2) inhibitory kinase Myt1. Palmer A; Gavin AC; Nebreda AR EMBO J; 1998 Sep; 17(17):5037-47. PubMed ID: 9724639 [TBL] [Abstract][Full Text] [Related]
17. Combinatorial control of cyclin B1 nuclear trafficking through phosphorylation at multiple sites. Yang J; Song H; Walsh S; Bardes ES; Kornbluth S J Biol Chem; 2001 Feb; 276(5):3604-9. PubMed ID: 11060306 [TBL] [Abstract][Full Text] [Related]
18. Hyperphosphorylation of the N-terminal domain of Cdc25 regulates activity toward cyclin B1/Cdc2 but not cyclin A/Cdk2. Gabrielli BG; Clark JM; McCormack AK; Ellem KA J Biol Chem; 1997 Nov; 272(45):28607-14. PubMed ID: 9353326 [TBL] [Abstract][Full Text] [Related]
19. Use of CDC2 from etoposide-treated cells as substrate to assay CDC25 phosphatase activity. Cans C; Sert V; De Rycke J; Baldin V; Ducommun B Anticancer Res; 1999; 19(2A):1241-4. PubMed ID: 10368682 [TBL] [Abstract][Full Text] [Related]
20. In vivo regulation of cyclin A/Cdc2 and cyclin B/Cdc2 through meiotic and early cleavage cycles in starfish. Okano-Uchida T; Sekiai T; Lee K; Okumura E; Tachibana K; Kishimoto T Dev Biol; 1998 May; 197(1):39-53. PubMed ID: 9578617 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]