These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 10205852)
21. The potential of immobilized artificial membrane chromatography to predict human oral absorption. Tsopelas F; Vallianatou T; Tsantili-Kakoulidou A Eur J Pharm Sci; 2016 Jan; 81():82-93. PubMed ID: 26485055 [TBL] [Abstract][Full Text] [Related]
22. The use of immobilized artificial membrane chromatography to predict bioconcentration of pharmaceutical compounds. Tsopelas F; Stergiopoulos C; Tsakanika LA; Ochsenkühn-Petropoulou M; Tsantili-Kakoulidou A Ecotoxicol Environ Saf; 2017 May; 139():150-157. PubMed ID: 28130991 [TBL] [Abstract][Full Text] [Related]
23. Database of published retention factors for immobilized artificial membrane HPLC and an assessment of the effect of experimental variability. Ledbetter MR; Gutsell S; Hodges G; Madden JC; O'Connor S; Cronin MT Environ Toxicol Chem; 2011 Dec; 30(12):2701-8. PubMed ID: 21919042 [TBL] [Abstract][Full Text] [Related]
24. Relationship between immobilised artificial membrane chromatographic retention and the brain penetration of structurally diverse drugs. Salminen T; Pulli A; Taskinen J J Pharm Biomed Anal; 1997 Jan; 15(4):469-77. PubMed ID: 8953490 [TBL] [Abstract][Full Text] [Related]
25. Modeling Caco-2 permeability of drugs using immobilized artificial membrane chromatography and physicochemical descriptors. Chan EC; Tan WL; Ho PC; Fang LJ J Chromatogr A; 2005 Apr; 1072(2):159-68. PubMed ID: 15887485 [TBL] [Abstract][Full Text] [Related]
26. Immobilized artificial membrane chromatography: quantitative structure-retention relationships of structurally diverse drugs. Luco JM; Salinas AP; Torriero AA; Vázquez RN; Raba J; Marchevsky E J Chem Inf Comput Sci; 2003; 43(6):2129-36. PubMed ID: 14632465 [TBL] [Abstract][Full Text] [Related]
27. Retention of barbituric acid derivatives on immobilized artificial membrane stationary phase and its correlation with biological activity. Kepczyńska E; Bojarski J; Haber P; Kaliszan R Biomed Chromatogr; 2000 Jun; 14(4):256-60. PubMed ID: 10861737 [TBL] [Abstract][Full Text] [Related]
28. Can protonated beta-blockers interact with biomembranes stronger than neutral isolipophilic compounds? A chromatographic study on three different phospholipid stationary phases (IAM-HPLC). Barbato F; di Martino G; Grumetto L; La Rotonda MI Eur J Pharm Sci; 2005; 25(4-5):379-86. PubMed ID: 15979535 [TBL] [Abstract][Full Text] [Related]
29. Immobilized-artificial-membrane chromatography: measurements of membrane partition coefficient and predicting drug membrane permeability. Ong S; Liu H; Pidgeon C J Chromatogr A; 1996 Mar; 728(1-2):113-28. PubMed ID: 8673230 [TBL] [Abstract][Full Text] [Related]
30. High-throughput evaluation of lipophilicity and acidity by new gradient HPLC methods. Markuszewski MJ; Wiczling P; Kaliszan R Comb Chem High Throughput Screen; 2004 Jun; 7(4):281-9. PubMed ID: 15200377 [TBL] [Abstract][Full Text] [Related]
31. Retention of substituted coumarins using immobilized artificial membrane (IAM) chromatography: a comparative study with n-octanol partitioning and reversed-phase HPLC and TLC. Vrakas D; Hadjipavlou-Litina D; Tsantili-Kakoulidou A J Pharm Biomed Anal; 2005 Oct; 39(5):908-13. PubMed ID: 16006082 [TBL] [Abstract][Full Text] [Related]
32. High-throughput lipophilicity measurement with immobilized artificial membranes. Faller B; Grimm HP; Loeuillet-Ritzler F; Arnold S; Briand X J Med Chem; 2005 Apr; 48(7):2571-6. PubMed ID: 15801846 [TBL] [Abstract][Full Text] [Related]
33. Potential of immobilized artificial membranes for predicting drug penetration across the blood-brain barrier. Reichel A; Begley DJ Pharm Res; 1998 Aug; 15(8):1270-4. PubMed ID: 9706060 [TBL] [Abstract][Full Text] [Related]
34. Electrostatic interactions and ionization effect in immobilized artificial membrane retention. A comparative study with octanol-water partitioning. Vrakas D; Giaginis C; Tsantili-Kakoulidou A J Chromatogr A; 2008 Apr; 1187(1-2):67-78. PubMed ID: 18291408 [TBL] [Abstract][Full Text] [Related]
35. Membrane partition coefficients chromatographically measured using immobilized artificial membrane surfaces. Ong S; Liu H; Qiu X; Bhat G; Pidgeon C Anal Chem; 1995 Feb; 67(4):755-62. PubMed ID: 7702190 [TBL] [Abstract][Full Text] [Related]
36. Predicting skin permeability of pharmaceutical and cosmetic compounds using retention on octadecyl, cholesterol-bonded and immobilized artificial membrane columns. Grooten Y; Mangelings D; Vander Heyden Y J Chromatogr A; 2022 Aug; 1676():463271. PubMed ID: 35779390 [TBL] [Abstract][Full Text] [Related]
37. Linear free energy relationship analysis of permeability across polydimethylsiloxane (PDMS) membranes and comparison with human skin permeation in vitro. Liu X; Zhang K; Abraham MH Eur J Pharm Sci; 2018 Oct; 123():524-530. PubMed ID: 30107227 [TBL] [Abstract][Full Text] [Related]
38. The use of biopartitioning micellar chromatography and immobilized artificial membrane column for in silico and in vitro determination of blood-brain barrier penetration of phenols. Stępnik KE; Malinowska I J Chromatogr A; 2013 Apr; 1286():127-36. PubMed ID: 23506703 [TBL] [Abstract][Full Text] [Related]
39. Modeling the Blood-Brain Barrier Permeability of Potential Heterocyclic Drugs via Biomimetic IAM Chromatography Technique Combined with QSAR Methodology. Janicka M; Sztanke M; Sztanke K Molecules; 2024 Jan; 29(2):. PubMed ID: 38257200 [TBL] [Abstract][Full Text] [Related]
40. pH-dependent surface electrostatic effects in retention on immobilized artificial membrane chromatography: Determination of the intrinsic phospholipid-water sorption coefficients of diverse analytes. Yang YX; Zhang Q; Li QQ; Xia ZN; Chen H; Zhou K; Yang FQ J Chromatogr A; 2018 Oct; 1570():172-182. PubMed ID: 30086834 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]