These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 10205896)
1. Glyoxalase I from Brassica juncea: molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress. Veena ; Reddy VS; Sopory SK Plant J; 1999 Feb; 17(4):385-95. PubMed ID: 10205896 [TBL] [Abstract][Full Text] [Related]
2. Sugar beet M14 glyoxalase I gene can enhance plant tolerance to abiotic stresses. Wu C; Ma C; Pan Y; Gong S; Zhao C; Chen S; Li H J Plant Res; 2013 May; 126(3):415-25. PubMed ID: 23203352 [TBL] [Abstract][Full Text] [Related]
3. Ectopic expression of an annexin from Brassica juncea confers tolerance to abiotic and biotic stress treatments in transgenic tobacco. Jami SK; Clark GB; Turlapati SA; Handley C; Roux SJ; Kirti PB Plant Physiol Biochem; 2008 Dec; 46(12):1019-30. PubMed ID: 18768323 [TBL] [Abstract][Full Text] [Related]
4. Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Singla-Pareek SL; Yadav SK; Pareek A; Reddy MK; Sopory SK Transgenic Res; 2008 Apr; 17(2):171-80. PubMed ID: 17387627 [TBL] [Abstract][Full Text] [Related]
5. Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Singla-Pareek SL; Reddy MK; Sopory SK Proc Natl Acad Sci U S A; 2003 Dec; 100(25):14672-7. PubMed ID: 14638937 [TBL] [Abstract][Full Text] [Related]
6. Metabolic engineering of glyoxalase pathway for enhancing stress tolerance in plants. Mustafiz A; Sahoo KK; Singla-Pareek SL; Sopory SK Methods Mol Biol; 2010; 639():95-118. PubMed ID: 20387042 [TBL] [Abstract][Full Text] [Related]
7. Molecular cloning and characterization of a novel glyoxalase I gene TaGly I in wheat (Triticum aestivum L.). Lin F; Xu J; Shi J; Li H; Li B Mol Biol Rep; 2010 Feb; 37(2):729-35. PubMed ID: 19513813 [TBL] [Abstract][Full Text] [Related]
8. Glyoxalase III enhances salinity tolerance through reactive oxygen species scavenging and reduced glycation. Ghosh A; Mustafiz A; Pareek A; Sopory SK; Singla-Pareek SL Physiol Plant; 2022 May; 174(3):e13693. PubMed ID: 35483971 [TBL] [Abstract][Full Text] [Related]
9. Transgenic tobacco plants overexpressing glyoxalase enzymes resist an increase in methylglyoxal and maintain higher reduced glutathione levels under salinity stress. Yadav SK; Singla-Pareek SL; Reddy MK; Sopory SK FEBS Lett; 2005 Nov; 579(27):6265-71. PubMed ID: 16253241 [TBL] [Abstract][Full Text] [Related]
10. Overexpression of a glyoxalase gene, OsGly I, improves abiotic stress tolerance and grain yield in rice (Oryza sativa L.). Zeng Z; Xiong F; Yu X; Gong X; Luo J; Jiang Y; Kuang H; Gao B; Niu X; Liu Y Plant Physiol Biochem; 2016 Dec; 109():62-71. PubMed ID: 27639962 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the glyoxalase 1 gene TcGLX1 in the metal hyperaccumulator plant Thlaspi caerulescens. Tuomainen M; Ahonen V; Kärenlampi SO; Schat H; Paasela T; Svanys A; Tuohimetsä S; Peräniemi S; Tervahauta A Planta; 2011 Jun; 233(6):1173-84. PubMed ID: 21327818 [TBL] [Abstract][Full Text] [Related]
12. Genome-wide analysis and expression profiling of glyoxalase gene families in soybean (Glycine max) indicate their development and abiotic stress specific response. Ghosh A; Islam T BMC Plant Biol; 2016 Apr; 16():87. PubMed ID: 27083416 [TBL] [Abstract][Full Text] [Related]
13. Molecular characterization of glyoxalase-I from a higher plant; upregulation by stress. Espartero J; Sánchez-Aguayo I; Pardo JM Plant Mol Biol; 1995 Dec; 29(6):1223-33. PubMed ID: 8616220 [TBL] [Abstract][Full Text] [Related]
14. Purification of glyoxalase I from onion bulbs and molecular cloning of its cDNA. Hossain MA; Fujita M Biosci Biotechnol Biochem; 2009 Sep; 73(9):2007-13. PubMed ID: 19734676 [TBL] [Abstract][Full Text] [Related]
15. Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Yadav SK; Singla-Pareek SL; Ray M; Reddy MK; Sopory SK Biochem Biophys Res Commun; 2005 Nov; 337(1):61-7. PubMed ID: 16176800 [TBL] [Abstract][Full Text] [Related]
16. An overview on the role of methylglyoxal and glyoxalases in plants. Yadav SK; Singla-Pareek SL; Sopory SK Drug Metabol Drug Interact; 2008; 23(1-2):51-68. PubMed ID: 18533364 [TBL] [Abstract][Full Text] [Related]
17. Insights into citric acid-induced cadmium tolerance and phytoremediation in Brassica juncea L.: Coordinated functions of metal chelation, antioxidant defense and glyoxalase systems. Mahmud JA; Hasanuzzaman M; Nahar K; Bhuyan MHMB; Fujita M Ecotoxicol Environ Saf; 2018 Jan; 147():990-1001. PubMed ID: 29976011 [TBL] [Abstract][Full Text] [Related]
18. BrRZFP1 a Brassica rapa C3HC4-type RING zinc finger protein involved in cold, salt and dehydration stress. Jung YJ; Lee IH; Nou IS; Lee KD; Rashotte AM; Kang KK Plant Biol (Stuttg); 2013 Mar; 15(2):274-83. PubMed ID: 22726580 [TBL] [Abstract][Full Text] [Related]
19. Overexpression of a novel soybean gene modulating Na+ and K+ transport enhances salt tolerance in transgenic tobacco plants. Chen H; He H; Yu D Physiol Plant; 2011 Jan; 141(1):11-8. PubMed ID: 20875056 [TBL] [Abstract][Full Text] [Related]
20. Overexpression of GlyI and GlyII genes in transgenic tomato (Solanum lycopersicum Mill.) plants confers salt tolerance by decreasing oxidative stress. Alvarez Viveros MF; Inostroza-Blancheteau C; Timmermann T; González M; Arce-Johnson P Mol Biol Rep; 2013 Apr; 40(4):3281-90. PubMed ID: 23283739 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]