These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

530 related articles for article (PubMed ID: 10206250)

  • 1. Regeneration of segmental diaphyseal defects in sheep tibiae using resorbable polymeric membranes: a preliminary study.
    Gugala Z; Gogolewski S
    J Orthop Trauma; 1999; 13(3):187-95. PubMed ID: 10206250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone regeneration in segmental defects with resorbable polymeric membranes: IV. Does the polymer chemical composition affect the healing process?
    Gogolewski S; Pineda L; Büsing CM
    Biomaterials; 2000 Dec; 21(24):2513-20. PubMed ID: 11071601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polylactide membranes in the treatment of segmental diaphyseal defects: animal model experiments in the rabbit radius, sheep tibia, Yucatan minipig radius, and goat tibia.
    Meinig RP
    Injury; 2002 Aug; 33 Suppl 2():B58-65. PubMed ID: 12365366
    [No Abstract]   [Full Text] [Related]  

  • 4. Regeneration of diaphyseal bone defects using resorbable poly(L/DL-lactide) and poly(D-lactide) membranes in the Yucatan pig model.
    Meinig RP; Buesing CM; Helm J; Gogolewski S
    J Orthop Trauma; 1997 Nov; 11(8):551-8. PubMed ID: 9415860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Guided bone regeneration in the treatment of segmental diaphyseal defects: a comparison between resorbable and non-resorbable membranes.
    Nasser NJ; Friedman A; Friedman M; Moor E; Mosheiff R
    Injury; 2005 Dec; 36(12):1460-6. PubMed ID: 16243336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone regeneration with resorbable polymeric membranes. III. Effect of poly(L-lactide) membrane pore size on the bone healing process in large defects.
    Pineda LM; Büsing M; Meinig RP; Gogolewski S
    J Biomed Mater Res; 1996 Jul; 31(3):385-94. PubMed ID: 8806065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elastomeric enriched biodegradable polyurethane sponges for critical bone defects: a successful case study reducing donor site morbidity.
    Lavrador C; Mascarenhas R; Coelho P; Brites C; Pereira A; Gogolewski S
    J Mater Sci Mater Med; 2016 Mar; 27(3):61. PubMed ID: 26800692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of a barrier membrane to facilitate reconstruction of massive segmental diaphyseal bone defects: an ovine model.
    Viateau V; Guillemin G; Calando Y; Logeart D; Oudina K; Sedel L; Hannouche D; Bousson V; Petite H
    Vet Surg; 2006 Jul; 35(5):445-52. PubMed ID: 16842289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone regeneration with resorbable polymeric membranes: treatment of diaphyseal bone defects in the rabbit radius with poly(L-lactide) membrane. A pilot study.
    Meinig RP; Rahn B; Perren SM; Gogolewski S
    J Orthop Trauma; 1996; 10(3):178-90. PubMed ID: 8667110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone healing with an in situ-formed bioresorbable polyethylene glycol hydrogel membrane in rabbit calvarial defects.
    Humber CC; Sándor GK; Davis JM; Peel SA; Brkovic BM; Kim YD; Holmes HI; Clokie CM
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2010 Mar; 109(3):372-84. PubMed ID: 20060340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of biphasic β-TCP with and without the use of collagen membranes on bone healing of surgically critical size defects. A radiological, histological, and histomorphometric study.
    Calvo-Guirado JL; Ramírez-Fernández MP; Delgado-Ruíz RA; Maté-Sánchez JE; Velasquez P; de Aza PN
    Clin Oral Implants Res; 2014 Nov; 25(11):1228-1238. PubMed ID: 24025159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of recombinant human osteogenic protein-1 on healing of segmental defects in non-human primates.
    Cook SD; Wolfe MW; Salkeld SL; Rueger DC
    J Bone Joint Surg Am; 1995 May; 77(5):734-50. PubMed ID: 7744899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compartmentalized bone regeneration of cranial defects with biodegradable barriers--effects of calcium sodium phosphate surface coatings on LactoSorb.
    Eppley BL; Stal S; Hollier L; Kumar M
    J Craniofac Surg; 2002 Sep; 13(5):681-6. PubMed ID: 12218798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of guided bone regeneration with non-resorbable and bioabsorbable barrier membranes on osseointegration around hydroxyapatite-coated and uncoated threaded titanium dental implants placed into a surgically-created dehiscence type defect in rabbit tibia: a pilot study.
    Ito K; Yamada Y; Ishigaki R; Nanba K; Nishida T; Sato S
    J Oral Sci; 2001 Mar; 43(1):61-7. PubMed ID: 11383638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone morphogenetic protein but not transforming growth factor-beta enhances bone formation in canine diaphyseal nonunions implanted with a biodegradable composite polymer.
    Heckman JD; Ehler W; Brooks BP; Aufdemorte TB; Lohmann CH; Morgan T; Boyan BD
    J Bone Joint Surg Am; 1999 Dec; 81(12):1717-29. PubMed ID: 10608383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Healing of critical-size segmental bone defects in the sheep tibiae using bioresorbable polylactide membranes.
    Gugala Z; Gogolewski S
    Injury; 2002 Aug; 33 Suppl 2():B71-6. PubMed ID: 12161322
    [No Abstract]   [Full Text] [Related]  

  • 17. Reconstruction of mandibular segmental defects using the guided-bone regeneration technique with polylactide membranes and/or autogenous bone graft: a preliminary study on the influence of membrane permeability.
    Sverzut CE; Faria PE; Magdalena CM; Trivellato AE; Mello-Filho FV; Paccola CA; Gogolewski S; Salata LA
    J Oral Maxillofac Surg; 2008 Apr; 66(4):647-56. PubMed ID: 18355588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A technique for creating critical-size defects in the metatarsus of sheep for use in investigation of healing of long-bone defects.
    Viateau V; Guillemin G; Yang YC; Bensaid W; Reviron T; Oudina K; Meunier A; Sedel L; Petite H
    Am J Vet Res; 2004 Dec; 65(12):1653-7. PubMed ID: 15631029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Healing of autologous cancellous bone transplants and hydroxylapatite ceramics in tibial segment defects. Value of ultrasonic follow up].
    Wefer J; Wefer A; Schratt HE; Thermann H; Wippermann BW
    Unfallchirurg; 2000 Jun; 103(6):452-61. PubMed ID: 10925647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bony healing of large cranial and mandibular defects protected from soft-tissue interposition: A comparative study of spontaneous bone regeneration, osteoconduction, and cancellous autografting in dogs.
    Lemperle SM; Calhoun CJ; Curran RW; Holmes RE
    Plast Reconstr Surg; 1998 Mar; 101(3):660-72. PubMed ID: 9500382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.