BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 10206711)

  • 1. Bacillus subtilis 168 gene lytF encodes a gamma-D-glutamate-meso-diaminopimelate muropeptidase expressed by the alternative vegetative sigma factor, sigmaD.
    Margot P; Pagni M; Karamata D
    Microbiology (Reading); 1999 Jan; 145 ( Pt 1)():57-65. PubMed ID: 10206711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptidoglycan hydrolase LytF plays a role in cell separation with CwlF during vegetative growth of Bacillus subtilis.
    Ohnishi R; Ishikawa S; Sekiguchi J
    J Bacteriol; 1999 May; 181(10):3178-84. PubMed ID: 10322020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localization of the vegetative cell wall hydrolases LytC, LytE, and LytF on the Bacillus subtilis cell surface and stability of these enzymes to cell wall-bound or extracellular proteases.
    Yamamoto H; Kurosawa S; Sekiguchi J
    J Bacteriol; 2003 Nov; 185(22):6666-77. PubMed ID: 14594841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The major and minor wall teichoic acids prevent the sidewall localization of vegetative DL-endopeptidase LytF in Bacillus subtilis.
    Yamamoto H; Miyake Y; Hisaoka M; Kurosawa S; Sekiguchi J
    Mol Microbiol; 2008 Oct; 70(2):297-310. PubMed ID: 18761696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic lethality of the lytE cwlO genotype in Bacillus subtilis is caused by lack of D,L-endopeptidase activity at the lateral cell wall.
    Hashimoto M; Ooiwa S; Sekiguchi J
    J Bacteriol; 2012 Feb; 194(4):796-803. PubMed ID: 22139507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new D,L-endopeptidase gene product, YojL (renamed CwlS), plays a role in cell separation with LytE and LytF in Bacillus subtilis.
    Fukushima T; Afkham A; Kurosawa S; Tanabe T; Yamamoto H; Sekiguchi J
    J Bacteriol; 2006 Aug; 188(15):5541-50. PubMed ID: 16855244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the sigmaD-dependent autolysins in Bacillus subtilis population heterogeneity.
    Chen R; Guttenplan SB; Blair KM; Kearns DB
    J Bacteriol; 2009 Sep; 191(18):5775-84. PubMed ID: 19542270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The lytE gene of Bacillus subtilis 168 encodes a cell wall hydrolase.
    Margot P; Wahlen M; Gholamhoseinian A; Piggot P; Karamata D
    J Bacteriol; 1998 Feb; 180(3):749-52. PubMed ID: 9457885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Post-translational control of vegetative cell separation enzymes through a direct interaction with specific inhibitor IseA in Bacillus subtilis.
    Yamamoto H; Hashimoto M; Higashitsuji Y; Harada H; Hariyama N; Takahashi L; Iwashita T; Ooiwa S; Sekiguchi J
    Mol Microbiol; 2008 Oct; 70(1):168-82. PubMed ID: 18761694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localization and expression of the Bacillus subtilis DL-endopeptidase LytF are influenced by mutations in LTA synthases and glycolipid anchor synthetic enzymes.
    Kiriyama Y; Yazawa K; Tanaka T; Yoshikawa R; Yamane H; Hashimoto M; Sekiguchi J; Yamamoto H
    Microbiology (Reading); 2014 Dec; 160(Pt 12):2639-2649. PubMed ID: 25288647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disruption of the cell wall lytic enzyme CwlO affects the amount and molecular size of poly-γ-glutamic acid produced by Bacillus subtilis (natto).
    Mitsui N; Murasawa H; Sekiguchi J
    J Gen Appl Microbiol; 2011; 57(1):35-43. PubMed ID: 21478646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DL-endopeptidases function as both cell wall hydrolases and poly-γ-glutamic acid hydrolases.
    Fukushima T; Uchida N; Ide M; Kodama T; Sekiguchi J
    Microbiology (Reading); 2018 Mar; 164(3):277-286. PubMed ID: 29458655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucosaminidase of Bacillus subtilis: cloning, regulation, primary structure and biochemical characterization.
    Rashid MH; Mori M; Sekiguchi J
    Microbiology (Reading); 1995 Oct; 141 ( Pt 10)():2391-404. PubMed ID: 7581999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Digestion of peptidoglycan near the cross-link is necessary for the growth of Bacillus subtilis.
    Hashimoto M; Matsushima H; Suparthana IP; Ogasawara H; Yamamoto H; Teng C; Sekiguchi J
    Microbiology (Reading); 2018 Mar; 164(3):299-307. PubMed ID: 29458657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The gene of the N-acetylglucosaminidase, a Bacillus subtilis 168 cell wall hydrolase not involved in vegetative cell autolysis.
    Margot P; Mauël C; Karamata D
    Mol Microbiol; 1994 May; 12(4):535-45. PubMed ID: 7934877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular cloning of a sporulation-specific cell wall hydrolase gene of Bacillus subtilis.
    Kuroda A; Asami Y; Sekiguchi J
    J Bacteriol; 1993 Oct; 175(19):6260-8. PubMed ID: 8407798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution structure of IseA, an inhibitor protein of DL-endopeptidases from Bacillus subtilis, reveals a novel fold with a characteristic inhibitory loop.
    Arai R; Fukui S; Kobayashi N; Sekiguchi J
    J Biol Chem; 2012 Dec; 287(53):44736-48. PubMed ID: 23091053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The tagGH operon of Bacillus subtilis 168 encodes a two-component ABC transporter involved in the metabolism of two wall teichoic acids.
    Lazarevic V; Karamata D
    Mol Microbiol; 1995 Apr; 16(2):345-55. PubMed ID: 7565096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The wprA gene of Bacillus subtilis 168, expressed during exponential growth, encodes a cell-wall-associated protease.
    Margot P; Karamata D
    Microbiology (Reading); 1996 Dec; 142 ( Pt 12)():3437-44. PubMed ID: 9004506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of FlgM in sigma D-dependent gene expression in Bacillus subtilis.
    Caramori T; Barilla D; Nessi C; Sacchi L; Galizzi A
    J Bacteriol; 1996 Jun; 178(11):3113-8. PubMed ID: 8655488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.