BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 10206712)

  • 1. The ribR gene encodes a monofunctional riboflavin kinase which is involved in regulation of the Bacillus subtilis riboflavin operon.
    Solovieva IM; Kreneva RA; Leak DJ; Perumov DA
    Microbiology (Reading); 1999 Jan; 145 ( Pt 1)():67-73. PubMed ID: 10206712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The riboflavin kinase encoding gene ribR of Bacillus subtilis is a part of a 10 kb operon, which is negatively regulated by the yrzC gene product.
    Solovieva IM; Kreneva RA; Errais Lopes L; Perumov DA
    FEMS Microbiol Lett; 2005 Feb; 243(1):51-8. PubMed ID: 15668000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The bifunctional flavokinase/flavin adenine dinucleotide synthetase from Streptomyces davawensis produces inactive flavin cofactors and is not involved in resistance to the antibiotic roseoflavin.
    Grill S; Busenbender S; Pfeiffer M; Köhler U; Mack M
    J Bacteriol; 2008 Mar; 190(5):1546-53. PubMed ID: 18156273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Cloning and biochemical identification of the ribR gene in Bacillus subtilis].
    Solov'eva IM; Kreneva RA; Polanuer BM; Kozlov IuI; Perumov DA
    Genetika; 1998 Jun; 34(6):839-42. PubMed ID: 9719928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Primary structure and functional activity of the Bacillus subtilis ribC gene].
    Gusarov II; Kreneva RA; Rybak KV; Podcherniaev DA; Iomantas IuV; Kolibaba LG; Polanuer BM; Kozlov IuI; Perumov DA
    Mol Biol (Mosk); 1997; 31(5):820-5. PubMed ID: 9454067
    [No Abstract]   [Full Text] [Related]  

  • 6. Regulation of riboflavin biosynthesis in Bacillus subtilis is affected by the activity of the flavokinase/flavin adenine dinucleotide synthetase encoded by ribC.
    Mack M; van Loon AP; Hohmann HP
    J Bacteriol; 1998 Feb; 180(4):950-5. PubMed ID: 9473052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RibR, a possible regulator of the Bacillus subtilis riboflavin biosynthetic operon, in vivo interacts with the 5'-untranslated leader of rib mRNA.
    Higashitsuji Y; Angerer A; Berghaus S; Hobl B; Mack M
    FEMS Microbiol Lett; 2007 Sep; 274(1):48-54. PubMed ID: 17590224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Mutational analysis of the ribC gene of Bacillus subtilis].
    Karelov DV; Kreneva RA; Érraĭs Lopes L; Perumov DA; Mironov AS
    Genetika; 2011 Jun; 47(6):856-61. PubMed ID: 21866869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning of FAD synthetase gene from Corynebacterium ammoniagenes and its application to FAD and FMN production.
    Hagihara T; Fujio T; Aisaka K
    Appl Microbiol Biotechnol; 1995 Jan; 42(5):724-9. PubMed ID: 7765913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular cloning and characterisation of the ribC gene from Bacillus subtilis: a point mutation in ribC results in riboflavin overproduction.
    Coquard D; Huecas M; Ott M; van Dijl JM; van Loon AP; Hohmann HP
    Mol Gen Genet; 1997 Mar; 254(1):81-4. PubMed ID: 9108293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Cloning of ribR, an additional regulatory gene of the Bacillus subtilis riboflavin operon].
    Solov'eva IM; Iomantas IuA; Kreneva RA; Kozlov IuI; Perumov DA
    Genetika; 1997 Jun; 33(6):739-43. PubMed ID: 9289409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Analysis of the primary structure of the supplementary regulatory region of the riboflavin operon in Bacillus subtilis].
    Gusarov II; Solov'eva IM; Iomantas IuA; Kreneva RA; Kozlov IuI; Perumov DA
    Genetika; 1997 Sep; 33(9):1319-22. PubMed ID: 9445827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Study of the mechanism for regulating ribR gene activity in Bacillus subtilis].
    Solov'eva IM; Kreneva RA; Erraĭs LL; Mironov AS; Perumov DA
    Genetika; 2004 May; 40(5):716-20. PubMed ID: 15272571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flavoproteins are potential targets for the antibiotic roseoflavin in Escherichia coli.
    Langer S; Hashimoto M; Hobl B; Mathes T; Mack M
    J Bacteriol; 2013 Sep; 195(18):4037-45. PubMed ID: 23836860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Multifunctional regulatory mutation in Bacillus subtilis flavinogenesis system].
    Kreneva RA; Karelov DV; Korol'kova NV; Mironov AS; Perumov DA
    Genetika; 2009 Oct; 45(10):1420-4. PubMed ID: 19947554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macrolide resistance gene mreA of Streptococcus agalactiae encodes a flavokinase.
    Clarebout G; Villers C; Leclercq R
    Antimicrob Agents Chemother; 2001 Aug; 45(8):2280-6. PubMed ID: 11451686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural insights into the synthesis of FMN in prokaryotic organisms.
    Herguedas B; Lans I; Sebastián M; Hermoso JA; Martínez-Júlvez M; Medina M
    Acta Crystallogr D Biol Crystallogr; 2015 Dec; 71(Pt 12):2526-42. PubMed ID: 26627660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Truncated FAD synthetase for direct biocatalytic conversion of riboflavin and analogs to their corresponding flavin mononucleotides.
    Iamurri SM; Daugherty AB; Edmondson DE; Lutz S
    Protein Eng Des Sel; 2013 Dec; 26(12):791-5. PubMed ID: 24170887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The FAD synthetase from the human pathogen Streptococcus pneumoniae: a bifunctional enzyme exhibiting activity-dependent redox requirements.
    Sebastián M; Lira-Navarrete E; Serrano A; Marcuello C; Velázquez-Campoy A; Lostao A; Hurtado-Guerrero R; Medina M; Martínez-Júlvez M
    Sci Rep; 2017 Aug; 7(1):7609. PubMed ID: 28790457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new Bacillus subtilis gene with homology to Escherichia coli prc.
    Marasco R; Varcamonti M; Ricca E; Sacco M
    Gene; 1996 Dec; 183(1-2):149-52. PubMed ID: 8996100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.