BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 10206999)

  • 1. The structure and unusual pH dependence of plastocyanin from the fern Dryopteris crassirhizoma. The protonation of an active site histidine is hindered by pi-pi interactions.
    Kohzuma T; Inoue T; Yoshizaki F; Sasakawa Y; Onodera K; Nagatomo S; Kitagawa T; Uzawa S; Isobe Y; Sugimura Y; Gotowda M; Kai Y
    J Biol Chem; 1999 Apr; 274(17):11817-23. PubMed ID: 10206999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure comparison between oxidized and reduced plastocyanin from a fern, Dryopteris crassirhizoma.
    Inoue T; Gotowda M; Sugawara H; Kohzuma T; Yoshizaki F; Sugimura Y; Kai Y
    Biochemistry; 1999 Oct; 38(42):13853-61. PubMed ID: 10529231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protonation of a histidine copper ligand in fern plastocyanin.
    Hulsker R; Mery A; Thomassen EA; Ranieri A; Sola M; Verbeet MP; Kohzuma T; Ubbink M
    J Am Chem Soc; 2007 Apr; 129(14):4423-9. PubMed ID: 17367139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active-site structure and electron-transfer reactivity of plastocyanins.
    Sato K; Kohzuma T; Dennison C
    J Am Chem Soc; 2003 Feb; 125(8):2101-12. PubMed ID: 12590538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unusual properties of plastocyanin from the fern Dryopteris crassirhizoma.
    Dennison C; Lawler AT; Kohzuma T
    Biochemistry; 2002 Jan; 41(2):552-60. PubMed ID: 11781094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient homodimer interactions studied using the electron self-exchange reaction.
    Sato K; Crowley PB; Dennison C
    J Biol Chem; 2005 May; 280(19):19281-8. PubMed ID: 15743773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pseudospecificity of the acidic patch of plastocyanin for the interaction with cytochrome f.
    Sato K; Kohzuma T; Dennison C
    J Am Chem Soc; 2004 Mar; 126(10):3028-9. PubMed ID: 15012114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution solution structure of reduced parsley plastocyanin.
    Bagby S; Driscoll PC; Harvey TS; Hill HA
    Biochemistry; 1994 May; 33(21):6611-22. PubMed ID: 8204598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plastocyanin: structural and functional analysis.
    Redinbo MR; Yeates TO; Merchant S
    J Bioenerg Biomembr; 1994 Feb; 26(1):49-66. PubMed ID: 8027022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The 2.15 A crystal structure of a triple mutant plastocyanin from the cyanobacterium Synechocystis sp. PCC 6803.
    Romero A; De la Cerda B; Varela PF; Navarro JA; Hervás M; De la Rosa MA
    J Mol Biol; 1998 Jan; 275(2):327-36. PubMed ID: 9466912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure determinations of oxidized and reduced plastocyanin from the cyanobacterium Synechococcus sp. PCC 7942.
    Inoue T; Sugawara H; Hamanaka S; Tsukui H; Suzuki E; Kohzuma T; Kai Y
    Biochemistry; 1999 May; 38(19):6063-9. PubMed ID: 10320332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the physiologically equivalent proteins cytochrome c6 and plastocyanin on the basis of their electrostatic potentials. Tryptophan 63 in cytochrome c6 may be isofunctional with tyrosine 83 in plastocyanin.
    Ullmann GM; Hauswald M; Jensen A; Kostić NM; Knapp EW
    Biochemistry; 1997 Dec; 36(51):16187-96. PubMed ID: 9405052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The plastocyanin binding domain of photosystem I.
    Hippler M; Reichert J; Sutter M; Zak E; Altschmied L; Schröer U; Herrmann RG; Haehnel W
    EMBO J; 1996 Dec; 15(23):6374-84. PubMed ID: 8978664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel insight into the copper-ligand geometry in the crystal structure of Ulva pertusa plastocyanin at 1.6-A resolution. Structural basis for regulation of the copper site by residue 88.
    Shibata N; Inoue T; Nagano C; Nishio N; Kohzuma T; Onodera K; Yoshizaki F; Sugimura Y; Kai Y
    J Biol Chem; 1999 Feb; 274(7):4225-30. PubMed ID: 9933621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics and mechanism of the acid transition of the active site in plastocyanin.
    Hass MA; Christensen HE; Zhang J; Led JJ
    Biochemistry; 2007 Dec; 46(50):14619-28. PubMed ID: 18020375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution structure of reduced plastocyanin from the blue-green alga Anabaena variabilis.
    Badsberg U; Jørgensen AM; Gesmar H; Led JJ; Hammerstad JM; Jespersen LL; Ulstrup J
    Biochemistry; 1996 Jun; 35(22):7021-31. PubMed ID: 8679527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of amino-acid residues in the hydrophobic patch surrounding the haem group of cytochrome f in the interaction with plastocyanin.
    Gong XS; Wen JQ; Gray JC
    Eur J Biochem; 2000 Mar; 267(6):1732-42. PubMed ID: 10712605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of pH on the self-exchange reactivity of the plant plastocyanin from parsley.
    Hunter DM; McFarlane W; Sykes AG; Dennison C
    Inorg Chem; 2001 Jan; 40(2):354-60. PubMed ID: 11170543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pi-interaction tuning of the active site properties of metalloproteins.
    Yanagisawa S; Crowley PB; Firbank SJ; Lawler AT; Hunter DM; McFarlane W; Li C; Kohzuma T; Banfield MJ; Dennison C
    J Am Chem Soc; 2008 Nov; 130(46):15420-8. PubMed ID: 18939838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The type 1 copper site of pseudoazurin: axial and rhombic.
    Gast P; Broeren FG; Sottini S; Aoki R; Takashina A; Yamaguchi T; Kohzuma T; Groenen EJ
    J Inorg Biochem; 2014 Aug; 137():57-63. PubMed ID: 24813397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.