BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 10207091)

  • 21. A RAG-1/RAG-2 tetramer supports 12/23-regulated synapsis, cleavage, and transposition of V(D)J recombination signals.
    Swanson PC
    Mol Cell Biol; 2002 Nov; 22(22):7790-801. PubMed ID: 12391148
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recruitment of RAG1 and RAG2 to Chromatinized DNA during V(D)J Recombination.
    Shetty K; Schatz DG
    Mol Cell Biol; 2015 Nov; 35(21):3701-13. PubMed ID: 26303526
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Footprint analysis of the RAG protein recombination signal sequence complex for V(D)J type recombination.
    Nagawa F; Ishiguro K; Tsuboi A; Yoshida T; Ishikawa A; Takemori T; Otsuka AJ; Sakano H
    Mol Cell Biol; 1998 Jan; 18(1):655-63. PubMed ID: 9418911
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A functional analysis of the spacer of V(D)J recombination signal sequences.
    Lee AI; Fugmann SD; Cowell LG; Ptaszek LM; Kelsoe G; Schatz DG
    PLoS Biol; 2003 Oct; 1(1):E1. PubMed ID: 14551903
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Real-time analysis of RAG complex activity in V(D)J recombination.
    Zagelbaum J; Shimazaki N; Esguerra ZA; Watanabe G; Lieber MR; Rothenberg E
    Proc Natl Acad Sci U S A; 2016 Oct; 113(42):11853-11858. PubMed ID: 27702897
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distinct roles of RAG1 and RAG2 in binding the V(D)J recombination signal sequences.
    Akamatsu Y; Oettinger MA
    Mol Cell Biol; 1998 Aug; 18(8):4670-8. PubMed ID: 9671477
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The B12/23 restriction is critically dependent on recombination signal nonamer and spacer sequences.
    Hughes MM; Tillman RE; Wehrly TD; White JM; Sleckman BP
    J Immunol; 2003 Dec; 171(12):6604-10. PubMed ID: 14662863
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Non-consensus heptamer sequences destabilize the RAG post-cleavage complex, making ends available to alternative DNA repair pathways.
    Arnal SM; Holub AJ; Salus SS; Roth DB
    Nucleic Acids Res; 2010 May; 38(9):2944-54. PubMed ID: 20139091
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Full-length RAG1 promotes contact with coding and intersignal sequences in RAG protein complexes bound to recombination signals paired in cis.
    Kumar S; Swanson PC
    Nucleic Acids Res; 2009 Apr; 37(7):2211-26. PubMed ID: 19233873
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A dimer of the lymphoid protein RAG1 recognizes the recombination signal sequence and the complex stably incorporates the high mobility group protein HMG2.
    Rodgers KK; Villey IJ; Ptaszek L; Corbett E; Schatz DG; Coleman JE
    Nucleic Acids Res; 1999 Jul; 27(14):2938-46. PubMed ID: 10390537
    [TBL] [Abstract][Full Text] [Related]  

  • 31. HMG-box domain stimulation of RAG1/2 cleavage activity is metal ion dependent.
    Kriatchko AN; Bergeron S; Swanson PC
    BMC Mol Biol; 2008 Apr; 9():32. PubMed ID: 18380906
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A stable RAG1-RAG2-DNA complex that is active in V(D)J cleavage.
    Hiom K; Gellert M
    Cell; 1997 Jan; 88(1):65-72. PubMed ID: 9019407
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The central domain of core RAG1 preferentially recognizes single-stranded recombination signal sequence heptamer.
    Peak MM; Arbuckle JL; Rodgers KK
    J Biol Chem; 2003 May; 278(20):18235-40. PubMed ID: 12644467
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nonamer binding protein induces a bend in the immunoglobulin gene recombinational signal sequence.
    Andrews R; Halligan NL; Halligan BD
    Biochem Biophys Res Commun; 1993 May; 193(1):139-45. PubMed ID: 8503900
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RAG and HMGB1 proteins: purification and biochemical analysis of recombination signal complexes.
    Bergeron S; Anderson DK; Swanson PC
    Methods Enzymol; 2006; 408():511-28. PubMed ID: 16793390
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Early steps of V(D)J rearrangement: insights from biochemical studies of RAG-RSS complexes.
    Swanson PC; Kumar S; Raval P
    Adv Exp Med Biol; 2009; 650():1-15. PubMed ID: 19731797
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cell cycle-dependent accumulation in vivo of transposition-competent complexes between recombination signal ends and full-length RAG proteins.
    Jiang H; Ross AE; Desiderio S
    J Biol Chem; 2004 Feb; 279(9):8478-86. PubMed ID: 14660558
    [TBL] [Abstract][Full Text] [Related]  

  • 38. V(D)J recombination: modulation of RAG1 and RAG2 cleavage activity on 12/23 substrates by whole cell extract and DNA-bending proteins.
    Sawchuk DJ; Weis-Garcia F; Malik S; Besmer E; Bustin M; Nussenzweig MC; Cortes P
    J Exp Med; 1997 Jun; 185(11):2025-32. PubMed ID: 9166431
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The RAG-HMG1 complex enforces the 12/23 rule of V(D)J recombination specifically at the double-hairpin formation step.
    West RB; Lieber MR
    Mol Cell Biol; 1998 Nov; 18(11):6408-15. PubMed ID: 9774656
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The bounty of RAGs: recombination signal complexes and reaction outcomes.
    Swanson PC
    Immunol Rev; 2004 Aug; 200():90-114. PubMed ID: 15242399
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.