These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 10207092)
1. Temporal activation of the sea urchin late H1 gene requires stage-specific phosphorylation of the embryonic transcription factor SSAP. Li Z; Childs G Mol Cell Biol; 1999 May; 19(5):3684-95. PubMed ID: 10207092 [TBL] [Abstract][Full Text] [Related]
2. The embryonic enhancer-binding protein SSAP contains a novel DNA-binding domain which has homology to several RNA-binding proteins. DeAngelo DJ; DeFalco J; Rybacki L; Childs G Mol Cell Biol; 1995 Mar; 15(3):1254-64. PubMed ID: 7862119 [TBL] [Abstract][Full Text] [Related]
3. Purification and characterization of the stage-specific embryonic enhancer-binding protein SSAP-1. DeAngelo DJ; DeFalco J; Childs G Mol Cell Biol; 1993 Mar; 13(3):1746-58. PubMed ID: 8441410 [TBL] [Abstract][Full Text] [Related]
4. Multiple SSAP binding sites constitute the stage-specific enhancer of the sea urchin late H1beta gene. Edelmann L; Childs G Gene Expr; 1998; 7(3):133-47. PubMed ID: 9840807 [TBL] [Abstract][Full Text] [Related]
5. Mutations that increase acidity enhance the transcriptional activity of the glutamine-rich activation domain in stage-specific activator protein. Benuck ML; Li Z; Childs G J Biol Chem; 1999 Sep; 274(36):25419-25. PubMed ID: 10464271 [TBL] [Abstract][Full Text] [Related]
6. Both basal and ontogenic promoter elements affect the timing and level of expression of a sea urchin H1 gene during early embryogenesis. Lai ZC; Maxson R; Childs G Genes Dev; 1988 Feb; 2(2):173-83. PubMed ID: 3360321 [TBL] [Abstract][Full Text] [Related]
7. The embryonic transcription factor stage specific activator protein contains a potent bipartite activation domain that interacts with several RNA polymerase II basal transcription factors. DeFalco J; Childs G Proc Natl Acad Sci U S A; 1996 Jun; 93(12):5802-7. PubMed ID: 8650173 [TBL] [Abstract][Full Text] [Related]
8. Developmentally-regulated interaction of a transcription factor complex containing CDP/cut with the early histone H3 gene promoter of the sea urchin Tetrapygus niger is associated with changes in chromatin structure and gene expression. Medina R; Paredes R; Puchi M; Imschenetzky M; Montecino M Gene; 2001 Jul; 272(1-2):237-48. PubMed ID: 11470530 [TBL] [Abstract][Full Text] [Related]
9. An embryonic enhancer determines the temporal activation of a sea urchin late H1 gene. Lai ZC; DeAngelo DJ; DiLiberto M; Childs G Mol Cell Biol; 1989 Jun; 9(6):2315-21. PubMed ID: 2548079 [TBL] [Abstract][Full Text] [Related]
10. Activation of a late H2B histone gene in blastula-stage sea urchin embryos by an unusual enhancer element located 3' of the gene. Zhao AZ; Colin AM; Bell J; Baker M; Char BR; Maxson R Mol Cell Biol; 1990 Dec; 10(12):6730-41. PubMed ID: 2247080 [TBL] [Abstract][Full Text] [Related]
11. Activation of the L1 late H2B histone gene in blastula-stage sea urchin embryos by Antennapedia-class homeoprotein. Zhao AZ; Vansant G; Bell J; Humphreys T; Maxson R Mech Dev; 1991 Mar; 34(1):21-8. PubMed ID: 1680374 [TBL] [Abstract][Full Text] [Related]
12. Spatial and temporal expression pattern during sea urchin embryogenesis of a gene coding for a protease homologous to the human protein BMP-1 and to the product of the Drosophila dorsal-ventral patterning gene tolloid. Lepage T; Ghiglione C; Gache C Development; 1992 Jan; 114(1):147-63. PubMed ID: 1339338 [TBL] [Abstract][Full Text] [Related]
13. The five cleavage-stage (CS) histones of the sea urchin are encoded by a maternally expressed family of replacement histone genes: functional equivalence of the CS H1 and frog H1M (B4) proteins. Mandl B; Brandt WF; Superti-Furga G; Graninger PG; Birnstiel ML; Busslinger M Mol Cell Biol; 1997 Mar; 17(3):1189-200. PubMed ID: 9032246 [TBL] [Abstract][Full Text] [Related]
14. Temporal embryonic expression of the sea urchin early H1 gene is controlled by sequences immediately upstream and downstream of the TATA element. Fei H; Childs G Dev Biol; 1993 Feb; 155(2):383-95. PubMed ID: 8432394 [TBL] [Abstract][Full Text] [Related]
15. In vitro embryonic developmental phosphorylation of the cellular nucleic acid binding protein by cAMP-dependent protein kinase, and its relevance for biochemical activities. Lombardo VA; Armas P; Weiner AM; Calcaterra NB FEBS J; 2007 Jan; 274(2):485-97. PubMed ID: 17166179 [TBL] [Abstract][Full Text] [Related]
16. Human ZFM1 protein is a transcriptional repressor that interacts with the transcription activation domain of stage-specific activator protein. Zhang D; Childs G J Biol Chem; 1998 Mar; 273(12):6868-77. PubMed ID: 9506990 [TBL] [Abstract][Full Text] [Related]
17. An Elk transcription factor is required for Runx-dependent survival signaling in the sea urchin embryo. Rizzo F; Coffman JA; Arnone MI Dev Biol; 2016 Aug; 416(1):173-186. PubMed ID: 27235147 [TBL] [Abstract][Full Text] [Related]
18. Modulator factor-binding sequence of the sea urchin early histone H2A promoter acts as an enhancer element. Palla F; Bonura C; Anello L; Di Gaetano L; Spinelli G Proc Natl Acad Sci U S A; 1994 Dec; 91(25):12322-6. PubMed ID: 7991625 [TBL] [Abstract][Full Text] [Related]
19. Developmental control of promoter-specific factors responsible for the embryonic activation and inactivation of the sea urchin early histone H3 gene. DiLiberto M; Lai ZC; Fei H; Childs G Genes Dev; 1989 Jul; 3(7):973-85. PubMed ID: 2777077 [TBL] [Abstract][Full Text] [Related]
20. Functional interaction between TATA and upstream CACGTG elements regulates the temporally specific expression of Otx mRNAs during early embryogenesis of the sea urchin, Hemicentrotus pulcherrimus. Kobayashi A; Akasaka K; Kawaichi M; Kokubo T Nucleic Acids Res; 2002 Jul; 30(14):3034-44. PubMed ID: 12136085 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]