BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 10207650)

  • 1. Optical high-precision three-dimensional position measurement system suitable for head motion tracking in frameless stereotactic radiosurgery.
    Kai J; Shiomi H; Sasama T; Sato Y; Inoue T; Tamura S; Inoue T
    Comput Aided Surg; 1998; 3(5):257-63. PubMed ID: 10207650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a frameless stereotactic radiosurgery system based on real-time 6D position monitoring and adaptive head motion compensation.
    Wiersma RD; Wen Z; Sadinski M; Farrey K; Yenice KM
    Phys Med Biol; 2010 Jan; 55(2):389-401. PubMed ID: 20019403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motion monitoring for cranial frameless stereotactic radiosurgery using video-based three-dimensional optical surface imaging.
    Li G; Ballangrud A; Kuo LC; Kang H; Kirov A; Lovelock M; Yamada Y; Mechalakos J; Amols H
    Med Phys; 2011 Jul; 38(7):3981-94. PubMed ID: 21858995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frame-less and mask-less cranial stereotactic radiosurgery: a feasibility study.
    Cerviño LI; Pawlicki T; Lawson JD; Jiang SB
    Phys Med Biol; 2010 Apr; 55(7):1863-73. PubMed ID: 20224158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frameless stereotactic radiosurgery with a bite-plate: our experience with brain metastases.
    Furuse M; Aoki T; Takagi T; Takahashi JA; Ishikawa M
    Minim Invasive Neurosurg; 2008 Dec; 51(6):333-5. PubMed ID: 19061143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advantages and limitations of prospective head motion compensation for MRI using an optical motion tracking device.
    Dold C; Zaitsev M; Speck O; Firle EA; Hennig J; Sakas G
    Acad Radiol; 2006 Sep; 13(9):1093-103. PubMed ID: 16935721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards frameless maskless SRS through real-time 6DoF robotic motion compensation.
    Belcher AH; Liu X; Chmura S; Yenice K; Wiersma RD
    Phys Med Biol; 2017 Nov; 62(23):9054-9066. PubMed ID: 29131807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Markerless real-time 3-D target region tracking by motion backprojection from projection images.
    Rohlfing T; Denzler J; Grässl C; Russakoff DB; Maurer CR
    IEEE Trans Med Imaging; 2005 Nov; 24(11):1455-68. PubMed ID: 16279082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Initial clinical experience with frameless radiosurgery for patients with intracranial metastases.
    Kamath R; Ryken TC; Meeks SL; Pennington EC; Ritchie J; Buatti JM
    Int J Radiat Oncol Biol Phys; 2005 Apr; 61(5):1467-72. PubMed ID: 15817352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance evaluation of a CyberKnife G4 image-guided robotic stereotactic radiosurgery system.
    Antypas C; Pantelis E
    Phys Med Biol; 2008 Sep; 53(17):4697-718. PubMed ID: 18695294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CyberKnife frameless stereotactic radiosurgery for spinal lesions: clinical experience in 125 cases.
    Gerszten PC; Ozhasoglu C; Burton SA; Vogel WJ; Atkins BA; Kalnicki S; Welch WC
    Neurosurgery; 2004 Jul; 55(1):89-98; discussion 98-9. PubMed ID: 15214977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial and temporal performance of 3D optical surface imaging for real-time head position tracking.
    Wiersma RD; Tomarken SL; Grelewicz Z; Belcher AH; Kang H
    Med Phys; 2013 Nov; 40(11):111712. PubMed ID: 24320420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive prediction of respiratory motion for motion compensation radiotherapy.
    Ren Q; Nishioka S; Shirato H; Berbeco RI
    Phys Med Biol; 2007 Nov; 52(22):6651-61. PubMed ID: 17975289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical tracking technology in stereotactic radiation therapy.
    Wagner TH; Meeks SL; Bova FJ; Friedman WA; Willoughby TR; Kupelian PA; Tome W
    Med Dosim; 2007; 32(2):111-20. PubMed ID: 17472890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Introducing sitetrack: continuous patient motion monitoring during stereotactic radiotherapy for the head.
    Saito K; Fujii M; Kajiwara K; Suzuki M
    Neurosurgery; 2009 Feb; 64(2 Suppl):A110-22. PubMed ID: 19165067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frameless image-guided intracranial stereotactic radiosurgery: clinical outcomes for brain metastases.
    Breneman JC; Steinmetz R; Smith A; Lamba M; Warnick RE
    Int J Radiat Oncol Biol Phys; 2009 Jul; 74(3):702-6. PubMed ID: 19231101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robotic real-time translational and rotational head motion correction during frameless stereotactic radiosurgery.
    Liu X; Belcher AH; Grelewicz Z; Wiersma RD
    Med Phys; 2015 Jun; 42(6):2757-63. PubMed ID: 26127028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of image-guided positioning for frameless intracranial radiosurgery.
    Lamba M; Breneman JC; Warnick RE
    Int J Radiat Oncol Biol Phys; 2009 Jul; 74(3):913-9. PubMed ID: 19327898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical experiences with onboard imager KV images for linear accelerator-based stereotactic radiosurgery and radiotherapy setup.
    Hong LX; Chen CC; Garg M; Yaparpalvi R; Mah D
    Int J Radiat Oncol Biol Phys; 2009 Feb; 73(2):556-61. PubMed ID: 19147020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fiducial versus nonfiducial neuronavigation registration assessment and considerations of accuracy.
    Pfisterer WK; Papadopoulos S; Drumm DA; Smith K; Preul MC
    Neurosurgery; 2008 Mar; 62(3 Suppl 1):201-7; discussion 207-8. PubMed ID: 18424987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.