These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 1020826)

  • 1. Forces on lumbo-vertebral facets.
    Fiorini GT
    Ann Biomed Eng; 1976 Dec; 4(4):354-63. PubMed ID: 1020826
    [No Abstract]   [Full Text] [Related]  

  • 2. Effects of lumbo-pelvic rhythm on trunk muscle forces and disc loads during forward flexion: A combined musculoskeletal and finite element simulation study.
    Liu T; Khalaf K; Adeeb S; El-Rich M
    J Biomech; 2019 Jan; 82():116-123. PubMed ID: 30389260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The possible importance of the psoas muscle for stabilization of the lumbar spine.
    Nachemson A
    Acta Orthop Scand; 1968; 39(1):47-57. PubMed ID: 5730107
    [No Abstract]   [Full Text] [Related]  

  • 4. Intervertebral disc degeneration can lead to "stress-shielding" of the anterior vertebral body: a cause of osteoporotic vertebral fracture?
    Pollintine P; Dolan P; Tobias JH; Adams MA
    Spine (Phila Pa 1976); 2004 Apr; 29(7):774-82. PubMed ID: 15087801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Spinal biomechanics and the sitting position].
    Lelong C; Drevet JG; Chevallier R; Phelip X
    Rev Rhum Mal Osteoartic; 1988 Apr; 55(5):375-80. PubMed ID: 3387881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electromyographic studies on the vertebral portion of the psoas muscle; with special reference to its stabilizing function of the lumbar spine.
    Nachemson A
    Acta Orthop Scand; 1966; 37(2):177-90. PubMed ID: 5911492
    [No Abstract]   [Full Text] [Related]  

  • 7. Differences in lumbar spine load due to posture and upper limb external load.
    Kamińska J; Roman-Liu D; Zagrajek T; Borkowski P
    Int J Occup Saf Ergon; 2010; 16(4):421-30. PubMed ID: 21144261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporating Six Degree-of-Freedom Intervertebral Joint Stiffness in a Lumbar Spine Musculoskeletal Model-Method and Performance in Flexed Postures.
    Meng X; Bruno AG; Cheng B; Wang W; Bouxsein ML; Anderson DE
    J Biomech Eng; 2015 Oct; 137(10):101008. PubMed ID: 26299207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A combined finite element and optimization investigation of lumbar spine mechanics with and without muscles.
    Goel VK; Kong W; Han JS; Weinstein JN; Gilbertson LG
    Spine (Phila Pa 1976); 1993 Sep; 18(11):1531-41. PubMed ID: 8235826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anterior thoracic posture increases thoracolumbar disc loading.
    Harrison DE; Colloca CJ; Harrison DD; Janik TJ; Haas JW; Keller TS
    Eur Spine J; 2005 Apr; 14(3):234-42. PubMed ID: 15168237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lumbar disc pressure and myoelectric back muscle activity during sitting. I. Studies on an experimental chair.
    Andersson BJ; Ortengren R; Nachemson A; Elfström G
    Scand J Rehabil Med; 1974; 6(3):104-14. PubMed ID: 4417801
    [No Abstract]   [Full Text] [Related]  

  • 12. Influence of spinal disc translational stiffness on the lumbar spinal loads, ligament forces and trunk muscle forces during upper body inclination.
    Arshad R; Zander T; Bashkuev M; Schmidt H
    Med Eng Phys; 2017 Aug; 46():54-62. PubMed ID: 28666589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity analysis of the position of the intervertebral centres of reaction in upright standing--a musculoskeletal model investigation of the lumbar spine.
    Zander T; Dreischarf M; Schmidt H
    Med Eng Phys; 2016 Mar; 38(3):297-301. PubMed ID: 26774670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Mechanical model for flexible exercise bars to study the influence of the initial position of the bar on lumbar discs and muscles forces.
    Khalaf K; Abdollahi M; Nikkhoo M; Hoviattalab M; Asghari M; Ashouri S; Nikpour S; Kahrizi S; Parnianpour M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3917-20. PubMed ID: 26737150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The biomechanical influence of anterior vertebral body osteophytes on the lumbar spine: A finite element study.
    Wang Md K; Jiang PhD C; Wang PhD L; Wang Md H; Niu PhD W
    Spine J; 2018 Dec; 18(12):2288-2296. PubMed ID: 29990595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A three-dimensional nonlinear finite element model of lumbar intervertebral joint in torsion.
    Ueno K; Liu YK
    J Biomech Eng; 1987 Aug; 109(3):200-9. PubMed ID: 3657107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trunk muscle and lumbar ligament contributions to dynamic lifts with varying degrees of trunk flexion.
    Potvin JR; McGill SM; Norman RW
    Spine (Phila Pa 1976); 1991 Sep; 16(9):1099-107. PubMed ID: 1948399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational biomechanics of a lumbar motion segment in pure and combined shear loads.
    Schmidt H; Bashkuev M; Dreischarf M; Rohlmann A; Duda G; Wilke HJ; Shirazi-Adl A
    J Biomech; 2013 Sep; 46(14):2513-21. PubMed ID: 23953504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prolapsed intervertebral disc. A hyperflexion injury 1981 Volvo Award in Basic Science.
    Adams MA; Hutton WC
    Spine (Phila Pa 1976); 1982; 7(3):184-91. PubMed ID: 7112236
    [No Abstract]   [Full Text] [Related]  

  • 20. The mechanism of the lumbar spine.
    Gracovetsky S; Farfan HF; Lamy C
    Spine (Phila Pa 1976); 1981; 6(3):249-62. PubMed ID: 7268545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.