These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 10208742)

  • 21. Accumulation of fluorescently labeled actin in the cortical layer in sea urchin eggs after fertilization.
    Hamaguchi Y; Mabuchi I
    Cell Motil Cytoskeleton; 1988; 9(2):153-63. PubMed ID: 3359492
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calcium release at fertilization of Xenopus eggs requires type I IP(3) receptors, but not SH2 domain-mediated activation of PLCgamma or G(q)-mediated activation of PLCbeta.
    Runft LL; Watras J; Jaffe LA
    Dev Biol; 1999 Oct; 214(2):399-411. PubMed ID: 10525343
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of divalent cations in activation of the sea urchin egg. I. Effect of fertilization on divalent cation content.
    Azarnia R; Chambers EL
    J Exp Zool; 1976 Oct; 198(1):65-77. PubMed ID: 978163
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Studies on the role of exogenous calcium in fertilization, activation and development of the sea urchin egg.
    Schmidt T
    Prog Clin Biol Res; 1982; 85 Pt B():11-9. PubMed ID: 6812066
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of arachidonic acid on Na+/H+ exchange and neutral amino acid transport in sea urchin eggs.
    Ciapa B; Allemand D; De Renzis G
    Exp Cell Res; 1995 May; 218(1):248-54. PubMed ID: 7737362
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The in vivo rate of glucose-6-phosphate dehydrogenase activity in sea urchin eggs determined with a photolabile caged substrate.
    Swezey RR; Epel D
    Dev Biol; 1995 Jun; 169(2):733-44. PubMed ID: 7781912
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Measurement of the intracellular pH threshold for sperm aster formation in sea urchin eggs.
    Hamaguchi MS; Hamaguchi Y
    Dev Growth Differ; 2001 Aug; 43(4):447-58. PubMed ID: 11473551
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interdependence of Ca2+ and proton movements in trout hepatocytes.
    Ahmed KH; Pelster B
    J Exp Biol; 2007 Oct; 210(Pt 19):3473-83. PubMed ID: 17873001
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intracellular Ca2+ increase induces post-fertilization events via MAP kinase dephosphorylation in eggs of the hydrozoan jellyfish Cladonema pacificum.
    Kondoh E; Tachibana K; Deguchi R
    Dev Biol; 2006 May; 293(1):228-41. PubMed ID: 16530749
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detection of in vivo proteasome activity in a starfish oocyte using membrane-impermeant substrate.
    Chiba K; Sato E; Hoshi M
    J Biochem; 1997 Aug; 122(2):286-93. PubMed ID: 9378704
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Down-regulation of the inositol 1,4,5-trisphosphate receptor in mouse eggs following fertilization or parthenogenetic activation.
    Jellerette T; He CL; Wu H; Parys JB; Fissore RA
    Dev Biol; 2000 Jul; 223(2):238-50. PubMed ID: 10882513
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nuclear and cytoplasmic pH increase at fertilization in Urechis caupo.
    Gould MC; Stephano JL
    Dev Biol; 1993 Oct; 159(2):608-17. PubMed ID: 8405683
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cytoplasmic Ca2+ oscillation coordinates the formation of actin filaments in the sea urchin eggs activated with phorbol ester.
    Arai A; Kyozuka K; Nakazawa T
    Cell Motil Cytoskeleton; 1999; 42(1):27-35. PubMed ID: 9915582
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of intracellular pH on the mitotic apparatus and mitotic stage in the sand dollar egg.
    Watanabe K; Hamaguchi MS; Hamaguchi Y
    Cell Motil Cytoskeleton; 1997; 37(3):263-70. PubMed ID: 9227856
    [TBL] [Abstract][Full Text] [Related]  

  • 35. From fertilization to cancer: the role of centrosomes in the union and separation of genomic material.
    Schatten H; Hueser CN; Chakrabarti A
    Microsc Res Tech; 2000 Jun; 49(5):420-7. PubMed ID: 10842368
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carbon dioxide efflux accompanies release of fertilization acid from sea urchin eggs.
    Gillies RJ; Rosenberg MP; Deamer DW
    J Cell Physiol; 1981 Aug; 108(2):115-22. PubMed ID: 6790553
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ca2+-independent protein kinase C signalling in mouse eggs during the early phases of fertilization.
    Tatone C; Delle Monache S; Francione A; Gioia L; Barboni B; Colonna R
    Int J Dev Biol; 2003 Jun; 47(5):327-33. PubMed ID: 12895027
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prolonged incubation in seawater induces a DNA-dependent protein phosphorylation activity in Arbacia punctulata eggs.
    Kanungo J
    Biochem Biophys Res Commun; 2002 Jun; 294(3):667-71. PubMed ID: 12056821
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Low temperature and fertilization-induced Ca2+ changes in rat eggs.
    Ben-Yosef D; Oron Y; Shalgi R
    Mol Reprod Dev; 1995 Sep; 42(1):122-9. PubMed ID: 8562046
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simultaneous measurement of intracellular nitric oxide and free calcium levels in chordate eggs demonstrates that nitric oxide has no role at fertilization.
    Hyslop LA; Carroll M; Nixon VL; McDougall A; Jones KT
    Dev Biol; 2001 Jun; 234(1):216-30. PubMed ID: 11356031
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.