BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 10208869)

  • 1. Involvement of Spt7p in vacuolar polyphosphate level of Saccharomyces cerevisiae.
    Nishimura K; Yasumura K; Igarashi K; Kakinuma Y
    Biochem Biophys Res Commun; 1999 Apr; 257(3):835-8. PubMed ID: 10208869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proton gradient-driven nickel uptake by vacuolar membrane vesicles of Saccharomyces cerevisiae.
    Nishimura K; Igarashi K; Kakinuma Y
    J Bacteriol; 1998 Apr; 180(7):1962-4. PubMed ID: 9537401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Inactivation of the ppn1 gene exerts different effects on the metabolism of inorganic polyphosphates in the cytosol and the vacuoles of the yeast Saccharomyces cerevisiae].
    Lichko LP; Kulakovskaia TV; Pestov NA; Kulaev IS
    Mikrobiologiia; 2006; 75(3):305-11. PubMed ID: 16871795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcription of some PHO genes in Saccharomyces cerevisiae is regulated by spt7p.
    Nishimura K; Yasumura K; Igarashi K; Harashima S; Kakinuma Y
    Yeast; 1999 Dec; 15(16):1711-7. PubMed ID: 10590460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMR-Observed phosphate trafficking and polyphosphate dynamics in wild-type and vph1-1 mutant Saccharomyces cerevisae in response to stresses.
    Castrol CD; Koretsky AP; Domach MM
    Biotechnol Prog; 1999; 15(1):65-73. PubMed ID: 9933515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uptake of GABA and putrescine by UGA4 on the vacuolar membrane in Saccharomyces cerevisiae.
    Uemura T; Tomonari Y; Kashiwagi K; Igarashi K
    Biochem Biophys Res Commun; 2004 Mar; 315(4):1082-7. PubMed ID: 14985124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inorganic polyphosphates and exopolyphosphatases in cell compartments of the yeast Saccharomyces cerevisiae under inactivation of PPX1 and PPN1 genes.
    Lichko L; Kulakovskaya T; Pestov N; Kulaev I
    Biosci Rep; 2006 Feb; 26(1):45-54. PubMed ID: 16779667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cadmium tolerance in Saccharomyces cerevisiae depends on inorganic polyphosphate.
    Trilisenko L; Kulakovskaya E; Kulakovskaya T
    J Basic Microbiol; 2017 Nov; 57(11):982-986. PubMed ID: 28809038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of phosphate into vacuoles of Saccharomyces cerevisiae.
    Kulakovskaya TV; Kulaev IS
    Microbiologia; 1997 Mar; 13(1):71-4. PubMed ID: 9106184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SSU1 mediates sulphite efflux in Saccharomyces cerevisiae.
    Park H; Bakalinsky AT
    Yeast; 2000 Jul; 16(10):881-8. PubMed ID: 10870099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and functional characterization of a novel Candida albicans gene CaMNN5 that suppresses the iron-dependent growth defect of Saccharomyces cerevisiae aft1Delta mutant.
    Bai C; Chan FY; Wang Y
    Biochem J; 2005 Jul; 389(Pt 1):27-35. PubMed ID: 15725072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The subcellular distribution of nickel in Ni-sensitive and Ni-resistant strains of Saccharomyces cerevisiae.
    Joho M; Ishikawa Y; Kunikane M; Inouhe M; Tohoyama H; Murayama T
    Microbios; 1992; 71(287):149-59. PubMed ID: 1360616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyphosphates and exopolyphosphatase activities in the yeast Saccharomyces cerevisiae under overexpression of homologous and heterologous PPN1 genes.
    Eldarov MA; Baranov MV; Dumina MV; Shgun AA; Andreeva NA; Trilisenko LV; Kulakovskaya TV; Ryasanova LP; Kulaev IS
    Biochemistry (Mosc); 2013 Aug; 78(8):946-53. PubMed ID: 24228884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co2+ and Ni2+ resistance in Saccharomyces cerevisiae associated with a reduction in the accumulation of Mg2+.
    Joho M; Tarumi K; Inouhe M; Tohoyama H; Murayama T
    Microbios; 1991; 67(272-273):177-86. PubMed ID: 1779877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Yeast cys3 and gsh1 mutant cells display overlapping but non-identical symptoms of oxidative stress with regard to subcellular protein localization and CDP-DAG metabolism.
    Matiach A; Schröder-Köhne S
    Mol Genet Genomics; 2001 Nov; 266(3):481-96. PubMed ID: 11713678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Zrc1 is involved in zinc transport system between vacuole and cytosol in Saccharomyces cerevisiae.
    Miyabe S; Izawa S; Inoue Y
    Biochem Biophys Res Commun; 2001 Mar; 282(1):79-83. PubMed ID: 11263974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vtc5 Is Localized to the Vacuole Membrane by the Conserved AP-3 Complex to Regulate Polyphosphate Synthesis in Budding Yeast.
    Bentley-DeSousa A; Downey M
    mBio; 2021 Oct; 12(5):e0099421. PubMed ID: 34544285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupled synthesis and translocation restrains polyphosphate to acidocalcisome-like vacuoles and prevents its toxicity.
    Gerasimaitė R; Sharma S; Desfougères Y; Schmidt A; Mayer A
    J Cell Sci; 2014 Dec; 127(Pt 23):5093-104. PubMed ID: 25315834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of ZRC1 coding for suppressor of zinc toxicity is induced by zinc-starvation stress in Zap1-dependent fashion in Saccharomyces cerevisiae.
    Miyabe S; Izawa S; Inoue Y
    Biochem Biophys Res Commun; 2000 Oct; 276(3):879-84. PubMed ID: 11027563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vacuolar pool of magnesium in cells of the yeast Saccharomyces cereviciae.
    Okorokov LA; Letrikevich SB; Lichko LP; Mel'nikova EV
    Biol Bull Acad Sci USSR; 1978; 5(5):638-40. PubMed ID: 383162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.