BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 10209026)

  • 61. N-terminal phosphorylation of p60 katanin directly regulates microtubule severing.
    Whitehead E; Heald R; Wilbur JD
    J Mol Biol; 2013 Jan; 425(2):214-21. PubMed ID: 23178168
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Regulation of katanin activity in the ciliate Tetrahymena thermophila.
    Waclawek E; Joachimiak E; Hall MH; Fabczak H; Wloga D
    Mol Microbiol; 2017 Jan; 103(1):134-150. PubMed ID: 27726198
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Changes in microtubule polarity orientation during the development of hippocampal neurons in culture.
    Baas PW; Black MM; Banker GA
    J Cell Biol; 1989 Dec; 109(6 Pt 1):3085-94. PubMed ID: 2592416
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Transient increase in the levels of γ-tubulin complex and katanin are responsible for reorientation by ethylene and hypergravity of cortical microtubules.
    Soga K; Yamaguchi A; Kotake T; Wakabayashi K; Hoson T
    Plant Signal Behav; 2010 Nov; 5(11):1480-2. PubMed ID: 21051953
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Microtubules cut and run.
    Baas PW; Karabay A; Qiang L
    Trends Cell Biol; 2005 Oct; 15(10):518-24. PubMed ID: 16126385
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Microtubule-severing enzymes.
    Roll-Mecak A; McNally FJ
    Curr Opin Cell Biol; 2010 Feb; 22(1):96-103. PubMed ID: 19963362
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Differential regulation of microtubule severing by APC underlies distinct patterns of projection neuron and interneuron migration.
    Eom TY; Stanco A; Guo J; Wilkins G; Deslauriers D; Yan J; Monckton C; Blair J; Oon E; Perez A; Salas E; Oh A; Ghukasyan V; Snider WD; Rubenstein JL; Anton ES
    Dev Cell; 2014 Dec; 31(6):677-89. PubMed ID: 25535916
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A role for katanin-mediated axonemal severing during Chlamydomonas deflagellation.
    Lohret TA; McNally FJ; Quarmby LM
    Mol Biol Cell; 1998 May; 9(5):1195-207. PubMed ID: 9571249
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Protein phosphatase 4 catalytic subunit regulates Cdk1 activity and microtubule organization via NDEL1 dephosphorylation.
    Toyo-oka K; Mori D; Yano Y; Shiota M; Iwao H; Goto H; Inagaki M; Hiraiwa N; Muramatsu M; Wynshaw-Boris A; Yoshiki A; Hirotsune S
    J Cell Biol; 2008 Mar; 180(6):1133-47. PubMed ID: 18347064
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Structural and Molecular Basis for Katanin-Mediated Severing of Glutamylated Microtubules.
    Shin SC; Im SK; Jang EH; Jin KS; Hur EM; Kim EE
    Cell Rep; 2019 Jan; 26(5):1357-1367.e5. PubMed ID: 30699360
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Modelling the role of catastrophe, crossover and katanin-mediated severing in the self-organisation of plant cortical microtubules.
    Mace A; Wang W
    IET Syst Biol; 2015 Dec; 9(6):277-84. PubMed ID: 26577162
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Microtubule severing at crossover sites by katanin generates ordered cortical microtubule arrays in Arabidopsis.
    Zhang Q; Fishel E; Bertroche T; Dixit R
    Curr Biol; 2013 Nov; 23(21):2191-5. PubMed ID: 24206847
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Kinetically distinct phases of tau on microtubules regulate kinesin motors and severing enzymes.
    Siahaan V; Krattenmacher J; Hyman AA; Diez S; Hernández-Vega A; Lansky Z; Braun M
    Nat Cell Biol; 2019 Sep; 21(9):1086-1092. PubMed ID: 31481789
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Microtubule organization in the green kingdom: chaos or self-order?
    Wasteneys GO
    J Cell Sci; 2002 Apr; 115(Pt 7):1345-54. PubMed ID: 11896182
    [TBL] [Abstract][Full Text] [Related]  

  • 75. [Microtubule severing proteins - structure and activity regulation].
    Wacławek E; Włoga D
    Postepy Biochem; 2016; 62(1):46-51. PubMed ID: 28132444
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A potential posttranscriptional regulator for p60-katanin: miR-124-3p.
    Kaya Y; Korulu S; Tunoglu ENY; Yildiz A
    Cytoskeleton (Hoboken); 2023; 80(11-12):437-447. PubMed ID: 37439368
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Spastin-interacting protein NA14/SSNA1 functions in cytokinesis and axon development.
    Goyal U; Renvoisé B; Chang J; Blackstone C
    PLoS One; 2014; 9(11):e112428. PubMed ID: 25390646
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A katanin-like protein regulates normal cell wall biosynthesis and cell elongation.
    Burk DH; Liu B; Zhong R; Morrison WH; Ye ZH
    Plant Cell; 2001 Apr; 13(4):807-27. PubMed ID: 11283338
    [TBL] [Abstract][Full Text] [Related]  

  • 79. KATNAL1 is a more active and stable isoform of katanin, and is expressed dominantly in neurons.
    Hatakeyama E; Hayashi K
    Biochem Biophys Res Commun; 2018 Dec; 507(1-4):389-394. PubMed ID: 30448058
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Plant katanin, a microtubule severing protein.
    Stoppin-Mellet V; Gaillard J; Vantard M
    Cell Biol Int; 2003; 27(3):279. PubMed ID: 12681335
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.