BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 10209030)

  • 1. Cellular uptake of chloroquine is dependent on binding to ferriprotoporphyrin IX and is independent of NHE activity in Plasmodium falciparum.
    Bray PG; Janneh O; Raynes KJ; Mungthin M; Ginsburg H; Ward SA
    J Cell Biol; 1999 Apr; 145(2):363-76. PubMed ID: 10209030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chloroquine uptake and activity is determined by binding to ferriprotoporphyrin IX in Plasmodium falciparum.
    Bray PG; Janneh O; Ward SA
    Novartis Found Symp; 1999; 226():252-60; discussion 260-4. PubMed ID: 10645550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The treatment of Plasmodium falciparum-infected erythrocytes with chloroquine leads to accumulation of ferriprotoporphyrin IX bound to particular parasite proteins and to the inhibition of the parasite's 6-phosphogluconate dehydrogenase.
    Famin O; Ginsburg H
    Parasite; 2003 Mar; 10(1):39-50. PubMed ID: 12669348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential stimulation of the Na+/H+ exchanger determines chloroquine uptake in Plasmodium falciparum.
    Wünsch S; Sanchez CP; Gekle M; Grosse-Wortmann L; Wiesner J; Lanzer M
    J Cell Biol; 1998 Jan; 140(2):335-45. PubMed ID: 9442109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Access to hematin: the basis of chloroquine resistance.
    Bray PG; Mungthin M; Ridley RG; Ward SA
    Mol Pharmacol; 1998 Jul; 54(1):170-9. PubMed ID: 9658203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A critical role for PfCRT K76T in Plasmodium falciparum verapamil-reversible chloroquine resistance.
    Lakshmanan V; Bray PG; Verdier-Pinard D; Johnson DJ; Horrocks P; Muhle RA; Alakpa GE; Hughes RH; Ward SA; Krogstad DJ; Sidhu AB; Fidock DA
    EMBO J; 2005 Jul; 24(13):2294-305. PubMed ID: 15944738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a chloroquine importer in Plasmodium falciparum. Differences in import kinetics are genetically linked with the chloroquine-resistant phenotype.
    Sanchez CP; Wünsch S; Lanzer M
    J Biol Chem; 1997 Jan; 272(5):2652-8. PubMed ID: 9006900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chloroquine uptake, altered partitioning and the basis of drug resistance: evidence for chloride-dependent ionic regulation.
    Martiney JA; Ferrer AS; Cerami A; Dzekunov S; Roepe P
    Novartis Found Symp; 1999; 226():265-77; discussion 277-80. PubMed ID: 10645551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of kinetic data on the influx and efflux of chloroquine by erythrocytes infected with Plasmodium falciparum. Evidence for a drug-importer in chloroquine-sensitive strains.
    Ferrari V; Cutler DJ
    Biochem Pharmacol; 1991 Dec; 42 Suppl():S167-79. PubMed ID: 1768274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dihydroartemisinin-Ferriprotoporphyrin IX Adduct Abundance in Plasmodium falciparum Malarial Parasites and the Relationship to Emerging Artemisinin Resistance.
    Heller LE; Goggins E; Roepe PD
    Biochemistry; 2018 Dec; 57(51):6935-6945. PubMed ID: 30512926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lysis of malarial parasites and erythrocytes by ferriprotoporphyrin IX-chloroquine and the inhibition of this effect by proteins.
    Zhang Y; Hempelmann E
    Biochem Pharmacol; 1987 Apr; 36(8):1267-73. PubMed ID: 3297071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uptake of chloroquine by human erythrocytes.
    Ferrari V; Cutler DJ
    Biochem Pharmacol; 1990 Feb; 39(4):753-62. PubMed ID: 2306282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel short chain chloroquine analogues retain activity against chloroquine resistant K1 Plasmodium falciparum.
    Stocks PA; Raynes KJ; Bray PG; Park BK; O'Neill PM; Ward SA
    J Med Chem; 2002 Nov; 45(23):4975-83. PubMed ID: 12408708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heme binding contributes to antimalarial activity of bis-quaternary ammoniums.
    Biagini GA; Richier E; Bray PG; Calas M; Vial H; Ward SA
    Antimicrob Agents Chemother; 2003 Aug; 47(8):2584-9. PubMed ID: 12878523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional characterization of the Plasmodium falciparum chloroquine-resistance transporter (PfCRT) in transformed Dictyostelium discoideum vesicles.
    Papakrivos J; Sá JM; Wellems TE
    PLoS One; 2012; 7(6):e39569. PubMed ID: 22724026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of Free Ferriprotoporphyrin IX Heme and Hemozoin for Artemisinin Sensitive versus Delayed Clearance Phenotype Plasmodium falciparum Malarial Parasites.
    Heller LE; Roepe PD
    Biochemistry; 2018 Dec; 57(51):6927-6934. PubMed ID: 30513202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uptake of a fluorescently tagged chloroquine analogue is reduced in CQ-resistant compared to CQ-sensitive Plasmodium falciparum parasites.
    Reiling SJ; Rohrbach P
    Malar J; 2019 Oct; 18(1):342. PubMed ID: 31590674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemoglobin catabolism and the killing of intraerythrocytic Plasmodium falciparum by chloroquine.
    Orjih AU; Ryerse JS; Fitch CD
    Experientia; 1994 Jan; 50(1):34-9. PubMed ID: 8293798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution structures of antimalarial drug-heme complexes.
    Leed A; DuBay K; Ursos LM; Sears D; De Dios AC; Roepe PD
    Biochemistry; 2002 Aug; 41(32):10245-55. PubMed ID: 12162739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of hemoglobin degradation in Plasmodium falciparum by chloroquine and ammonium chloride.
    Zhang Y
    Exp Parasitol; 1987 Dec; 64(3):322-7. PubMed ID: 3315731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.