These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 10210196)

  • 1. Thermodynamic linkage between the binding of protons and inhibitors to HIV-1 protease.
    Trylska J; Antosiewicz J; Geller M; Hodge CN; Klabe RM; Head MS; Gilson MK
    Protein Sci; 1999 Jan; 8(1):180-95. PubMed ID: 10210196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic dissection of the binding energetics of KNI-272, a potent HIV-1 protease inhibitor.
    Velazquez-Campoy A; Luque I; Todd MJ; Milutinovich M; Kiso Y; Freire E
    Protein Sci; 2000 Sep; 9(9):1801-9. PubMed ID: 11045625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interpreting trends in the binding of cyclic ureas to HIV-1 protease.
    Mardis KL; Luo R; Gilson MK
    J Mol Biol; 2001 Jun; 309(2):507-17. PubMed ID: 11371168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH-REMD simulations indicate that the catalytic aspartates of HIV-1 protease exist primarily in a monoprotonated state.
    McGee TD; Edwards J; Roitberg AE
    J Phys Chem B; 2014 Nov; 118(44):12577-85. PubMed ID: 25340507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solution NMR evidence that the HIV-1 protease catalytic aspartyl groups have different ionization states in the complex formed with the asymmetric drug KNI-272.
    Wang YX; Freedberg DI; Yamazaki T; Wingfield PT; Stahl SJ; Kaufman JD; Kiso Y; Torchia DA
    Biochemistry; 1996 Aug; 35(31):9945-50. PubMed ID: 8756455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Importance of polar solvation and configurational entropy for design of antiretroviral drugs targeting HIV-1 protease.
    Kar P; Lipowsky R; Knecht V
    J Phys Chem B; 2013 May; 117(19):5793-805. PubMed ID: 23614718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ab initio molecular dynamics-based assignment of the protonation state of pepstatin A/HIV-1 protease cleavage site.
    Piana S; Sebastiani D; Carloni P; Parrinello M
    J Am Chem Soc; 2001 Sep; 123(36):8730-7. PubMed ID: 11535077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complete thermodynamic characterization of the multiple protonation equilibria of the aminoglycoside antibiotic paromomycin: a calorimetric and natural abundance 15N NMR study.
    Barbieri CM; Pilch DS
    Biophys J; 2006 Feb; 90(4):1338-49. PubMed ID: 16326918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does a diol cyclic urea inhibitor of HIV-1 protease bind tighter than its corresponding alcohol form? A study by free energy perturbation and continuum electrostatics calculations.
    Wang L; Duan Y; Stouten P; De Lucca GV; Klabe RM; Kollman PA
    J Comput Aided Mol Des; 2001 Feb; 15(2):145-56. PubMed ID: 11272701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate prediction of protonation state as a prerequisite for reliable MM-PB(GB)SA binding free energy calculations of HIV-1 protease inhibitors.
    Wittayanarakul K; Hannongbua S; Feig M
    J Comput Chem; 2008 Apr; 29(5):673-85. PubMed ID: 17849388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic mapping of the inhibitor site of the aspartic protease endothiapepsin.
    Gómez J; Freire E
    J Mol Biol; 1995 Sep; 252(3):337-50. PubMed ID: 7563055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental and 'in silico' analysis of the effect of pH on HIV-1 protease inhibitor affinity: implications for the charge state of the protein ionogenic groups.
    Domínguez JL; Gossas T; Carmen Villaverde M; Helena Danielson U; Sussman F
    Bioorg Med Chem; 2012 Aug; 20(15):4838-47. PubMed ID: 22743085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atypical protonation states in the active site of HIV-1 protease: a computational study.
    Czodrowski P; Sotriffer CA; Klebe G
    J Chem Inf Model; 2007; 47(4):1590-8. PubMed ID: 17503762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping hydration water molecules in the HIV-1 protease/DMP323 complex in solution by NMR spectroscopy.
    Wang YX; Freedberg DI; Grzesiek S; Torchia DA; Wingfield PT; Kaufman JD; Stahl SJ; Chang CH; Hodge CN
    Biochemistry; 1996 Oct; 35(39):12694-704. PubMed ID: 8841113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A structural and thermodynamic escape mechanism from a drug resistant mutation of the HIV-1 protease.
    Vega S; Kang LW; Velazquez-Campoy A; Kiso Y; Amzel LM; Freire E
    Proteins; 2004 May; 55(3):594-602. PubMed ID: 15103623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH dependence of binding reactions from free energy simulations and macroscopic continuum electrostatic calculations: application to 2'GMP/3'GMP binding to ribonuclease T1 and implications for catalysis.
    MacKerell AD; Sommer MS; Karplus M
    J Mol Biol; 1995 Apr; 247(4):774-807. PubMed ID: 7723031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH-dependent pKa values in proteins--a theoretical analysis of protonation energies with practical consequences for enzymatic reactions.
    Bombarda E; Ullmann GM
    J Phys Chem B; 2010 Feb; 114(5):1994-2003. PubMed ID: 20088566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzyme inhibition by iminosugars: analysis and insight into the glycosidase-iminosugar dependency of pH.
    López Ó; Qing FL; Pedersen CM; Bols M
    Bioorg Med Chem; 2013 Aug; 21(16):4755-61. PubMed ID: 23583693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pH Dependence of the photocycle kinetics of the E46Q mutant of photoactive yellow protein: protonation equilibrium between I1 and I2 intermediates, chromophore deprotonation by hydroxyl uptake, and protonation relaxation of the dark state.
    Borucki B; Otto H; Joshi CP; Gasperi C; Cusanovich MA; Devanathan S; Tollin G; Heyn MP
    Biochemistry; 2003 Jul; 42(29):8780-90. PubMed ID: 12873139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding free energy contributions of interfacial waters in HIV-1 protease/inhibitor complexes.
    Lu Y; Yang CY; Wang S
    J Am Chem Soc; 2006 Sep; 128(36):11830-9. PubMed ID: 16953623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.