These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 10210203)
1. Structural consequences of the active site substitution Cys181 ==> Ser in metallo-beta-lactamase from Bacteroides fragilis. Li Z; Rasmussen BA; Herzberg O Protein Sci; 1999 Jan; 8(1):249-52. PubMed ID: 10210203 [TBL] [Abstract][Full Text] [Related]
2. Crystal structures of the cadmium- and mercury-substituted metallo-beta-lactamase from Bacteroides fragilis. Concha NO; Rasmussen BA; Bush K; Herzberg O Protein Sci; 1997 Dec; 6(12):2671-6. PubMed ID: 9416622 [TBL] [Abstract][Full Text] [Related]
3. Crystal structure of the zinc-dependent beta-lactamase from Bacillus cereus at 1.9 A resolution: binuclear active site with features of a mononuclear enzyme. Fabiane SM; Sohi MK; Wan T; Payne DJ; Bateson JH; Mitchell T; Sutton BJ Biochemistry; 1998 Sep; 37(36):12404-11. PubMed ID: 9730812 [TBL] [Abstract][Full Text] [Related]
4. Binding of D- and L-captopril inhibitors to metallo-beta-lactamase studied by polarizable molecular mechanics and quantum mechanics. Antony J; Gresh N; Olsen L; Hemmingsen L; Schofield CJ; Bauer R J Comput Chem; 2002 Oct; 23(13):1281-96. PubMed ID: 12210153 [TBL] [Abstract][Full Text] [Related]
5. The crystal structure of the L1 metallo-beta-lactamase from Stenotrophomonas maltophilia at 1.7 A resolution. Ullah JH; Walsh TR; Taylor IA; Emery DC; Verma CS; Gamblin SJ; Spencer J J Mol Biol; 1998 Nov; 284(1):125-36. PubMed ID: 9811546 [TBL] [Abstract][Full Text] [Related]
6. Hybrid QM/MM and DFT investigations of the catalytic mechanism and inhibition of the dinuclear zinc metallo-beta-lactamase CcrA from Bacteroides fragilis. Park H; Brothers EN; Merz KM J Am Chem Soc; 2005 Mar; 127(12):4232-41. PubMed ID: 15783205 [TBL] [Abstract][Full Text] [Related]
7. Effect of pH on the active site of an Arg121Cys mutant of the metallo-beta-lactamase from Bacillus cereus: implications for the enzyme mechanism. Davies AM; Rasia RM; Vila AJ; Sutton BJ; Fabiane SM Biochemistry; 2005 Mar; 44(12):4841-9. PubMed ID: 15779910 [TBL] [Abstract][Full Text] [Related]
8. Characterization of the metal-binding sites of the beta-lactamase from Bacteroides fragilis. Crowder MW; Wang Z; Franklin SL; Zovinka EP; Benkovic SJ Biochemistry; 1996 Sep; 35(37):12126-32. PubMed ID: 8810919 [TBL] [Abstract][Full Text] [Related]
9. Structural effects of the active site mutation cysteine to serine in Bacillus cereus zinc-beta-lactamase. Chantalat L; Duée E; Galleni M; Frère JM; Dideberg O Protein Sci; 2000 Jul; 9(7):1402-6. PubMed ID: 10933508 [TBL] [Abstract][Full Text] [Related]
10. Crystal structure of the wide-spectrum binuclear zinc beta-lactamase from Bacteroides fragilis. Concha NO; Rasmussen BA; Bush K; Herzberg O Structure; 1996 Jul; 4(7):823-36. PubMed ID: 8805566 [TBL] [Abstract][Full Text] [Related]
11. Molecular dynamics simulations of the dinuclear zinc-beta-lactamase from Bacteroides fragilis complexed with imipenem. Suárez D; Díaz N; Merz KM J Comput Chem; 2002 Dec; 23(16):1587-600. PubMed ID: 12395427 [TBL] [Abstract][Full Text] [Related]
12. Unanticipated inhibition of the metallo-beta-lactamase from Bacteroides fragilis by 4-morpholineethanesulfonic acid (MES): a crystallographic study at 1.85-A resolution. Fitzgerald PM; Wu JK; Toney JH Biochemistry; 1998 May; 37(19):6791-800. PubMed ID: 9578564 [TBL] [Abstract][Full Text] [Related]
13. Structural basis for the role of Asp-120 in metallo-beta-lactamases. Crisp J; Conners R; Garrity JD; Carenbauer AL; Crowder MW; Spencer J Biochemistry; 2007 Sep; 46(37):10664-74. PubMed ID: 17715946 [TBL] [Abstract][Full Text] [Related]
14. Structure of the wild-type TEM-1 beta-lactamase at 1.55 A and the mutant enzyme Ser70Ala at 2.1 A suggest the mode of noncovalent catalysis for the mutant enzyme. Stec B; Holtz KM; Wojciechowski CL; Kantrowitz ER Acta Crystallogr D Biol Crystallogr; 2005 Aug; 61(Pt 8):1072-9. PubMed ID: 16041072 [TBL] [Abstract][Full Text] [Related]
15. Protonation state of Asp120 in the binuclear active site of the metallo-beta-lactamase from Bacteroides fragilis. Dal Peraro M; Vila AJ; Carloni P Inorg Chem; 2003 Jul; 42(14):4245-7. PubMed ID: 12844290 [TBL] [Abstract][Full Text] [Related]
16. Investigation of a catalytic zinc binding site in Escherichia coli L-threonine dehydrogenase by site-directed mutagenesis of cysteine-38. Johnson AR; Chen YW; Dekker EE Arch Biochem Biophys; 1998 Oct; 358(2):211-21. PubMed ID: 9784233 [TBL] [Abstract][Full Text] [Related]
17. Role of the omega-loop in the activity, substrate specificity, and structure of class A beta-lactamase. Banerjee S; Pieper U; Kapadia G; Pannell LK; Herzberg O Biochemistry; 1998 Mar; 37(10):3286-96. PubMed ID: 9521648 [TBL] [Abstract][Full Text] [Related]
18. Structure and kinetics of the beta-lactamase mutants S70A and K73H from Staphylococcus aureus PC1. Chen CC; Smith TJ; Kapadia G; Wäsch S; Zawadzke LE; Coulson A; Herzberg O Biochemistry; 1996 Sep; 35(38):12251-8. PubMed ID: 8823158 [TBL] [Abstract][Full Text] [Related]
19. Structure of metallo-beta-lactamase IND-7 from a Chryseobacterium indologenes clinical isolate at 1.65-A resolution. Yamaguchi Y; Takashio N; Wachino J; Yamagata Y; Arakawa Y; Matsuda K; Kurosaki H J Biochem; 2010 Jun; 147(6):905-15. PubMed ID: 20305272 [TBL] [Abstract][Full Text] [Related]
20. Insights into the structure and dynamics of the dinuclear zinc beta-lactamase site from Bacteroides fragilis. Suárez D; Brothers EN; Merz KM Biochemistry; 2002 May; 41(21):6615-30. PubMed ID: 12022865 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]