These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 10210325)
1. Detection of residual disease in pediatric B-cell precursor acute lymphoblastic leukemia by comparative phenotype mapping: a study of five cases controlled by genetic methods. Dworzak MN; Stolz F; Fröschl G; Printz D; Henn T; Fischer S; Fleischer C; Haas OA; Fritsch G; Gadner H; Panzer-Grümayer ER Exp Hematol; 1999 Apr; 27(4):673-81. PubMed ID: 10210325 [TBL] [Abstract][Full Text] [Related]
2. [Flow cytometric detection of minimal residual disease in pre-cursor-B-acute lymphoblastic leukemia on the basis of phenotypic aberrancies on minor leukemic cell populations]. Wu M; Sun XF; Xu ZM; Zhang XY; Li FR; Wang XG; Chen XL; Lin HQ; Wen HG; Sun X; Song TW Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2005 Aug; 13(4):557-62. PubMed ID: 16129033 [TBL] [Abstract][Full Text] [Related]
3. Immunophenotypic shift in the B-cell precursors from regenerating bone marrow samples: A critical consideration for measurable residual disease assessment in B-lymphoblastic leukemia. Chatterjee G; Sriram H; Ghogale S; Deshpande N; Khanka T; Panda D; Pradhan SN; Girase K; Narula G; Dhamane C; Malik NR; Banavali S; Patkar NV; Gujral S; Subramanian PG; Tembhare PR Cytometry B Clin Cytom; 2021 Jul; 100(4):434-445. PubMed ID: 32896101 [TBL] [Abstract][Full Text] [Related]
4. Immunophenotypic analysis of CD19+ precursors in normal human adult bone marrow: implications for minimal residual disease detection. Ciudad J; Orfao A; Vidriales B; Macedo A; Martínez A; González M; López-Berges MC; Valverde B; San Miguel JF Haematologica; 1998 Dec; 83(12):1069-75. PubMed ID: 9949623 [TBL] [Abstract][Full Text] [Related]
5. Flow cytometric analysis of normal B cell differentiation: a frame of reference for the detection of minimal residual disease in precursor-B-ALL. Lúcio P; Parreira A; van den Beemd MW; van Lochem EG; van Wering ER; Baars E; Porwit-MacDonald A; Bjorklund E; Gaipa G; Biondi A; Orfao A; Janossy G; van Dongen JJ; San Miguel JF Leukemia; 1999 Mar; 13(3):419-27. PubMed ID: 10086733 [TBL] [Abstract][Full Text] [Related]
6. Detection of residual disease in pediatric B-cell precursor acute lymphoblastic leukemia by comparative phenotype mapping: method and significance. Dworzak MN; Fritsch G; Panzer-Grümayer ER; Mann G; Gadner H Leuk Lymphoma; 2000 Jul; 38(3-4):295-308. PubMed ID: 10830736 [TBL] [Abstract][Full Text] [Related]
8. Comparative phenotype mapping of normal vs. malignant pediatric B-lymphopoiesis unveils leukemia-associated aberrations. Dworzak MN; Fritsch G; Fleischer C; Printz D; Fröschl G; Buchinger P; Mann G; Gadner H Exp Hematol; 1998 Apr; 26(4):305-13. PubMed ID: 9546313 [TBL] [Abstract][Full Text] [Related]
9. The immunophenotypes of blast cells in B-cell precursor acute lymphoblastic leukemia: how different are they from their normal counterparts? Sędek Ł; Bulsa J; Sonsala A; Twardoch M; Wieczorek M; Malinowska I; Derwich K; Niedźwiecki M; Sobol-Milejska G; Kowalczyk JR; Mazur B; Szczepański T Cytometry B Clin Cytom; 2014 Sep; 86(5):329-39. PubMed ID: 24845957 [TBL] [Abstract][Full Text] [Related]
10. A limited antibody panel can distinguish B-precursor acute lymphoblastic leukemia from normal B precursors with four color flow cytometry: implications for residual disease detection. Weir EG; Cowan K; LeBeau P; Borowitz MJ Leukemia; 1999 Apr; 13(4):558-67. PubMed ID: 10214862 [TBL] [Abstract][Full Text] [Related]
11. Standardizing minimal residual disease by flow cytometry for precursor B lineage acute lymphoblastic leukemia in a developing country. Patkar N; Alex AA; B B; Ahmed R; Abraham A; George B; Vishwabandya A; Srivastava A; Mathews V Cytometry B Clin Cytom; 2012 Jul; 82(4):252-8. PubMed ID: 22467604 [TBL] [Abstract][Full Text] [Related]
12. Identification of residual leukemic cells by flow cytometry in childhood B-cell precursor acute lymphoblastic leukemia: verification of leukemic state by flow-sorting and molecular/cytogenetic methods. Øbro NF; Ryder LP; Madsen HO; Andersen MK; Lausen B; Hasle H; Schmiegelow K; Marquart HV Haematologica; 2012 Jan; 97(1):137-41. PubMed ID: 21933850 [TBL] [Abstract][Full Text] [Related]
13. [Clinical significance for minimal residual disease detection by 4 color flow cytometry in adult and childhood B lineage acute lymphoblastic leukemia]. Liu YR; Zhang LP; Chang Y; Cheng YF; Fu JY; Li LD; Wang H; Liu GL; Chen SS; Huang XJ; Lu DP Zhonghua Xue Ye Xue Za Zhi; 2006 May; 27(5):302-5. PubMed ID: 16875577 [TBL] [Abstract][Full Text] [Related]
14. Detailed immunophenotyping of B-cell precursors in regenerating bone marrow of acute lymphoblastic leukaemia patients: implications for minimal residual disease detection. Theunissen PMJ; Sedek L; De Haas V; Szczepanski T; Van Der Sluijs A; Mejstrikova E; Nováková M; Kalina T; Lecrevisse Q; Orfao A; Lankester AC; van Dongen JJM; Van Der Velden VHJ; Br J Haematol; 2017 Jul; 178(2):257-266. PubMed ID: 28419441 [TBL] [Abstract][Full Text] [Related]
15. Multiparameter phenotype mapping of normal and post-chemotherapy B lymphopoiesis in pediatric bone marrow. Dworzak MN; Fritsch G; Fleischer C; Printz D; Fröschl G; Buchinger P; Mann G; Gadner H Leukemia; 1997 Aug; 11(8):1266-73. PubMed ID: 9264380 [TBL] [Abstract][Full Text] [Related]
16. CD304/neuropilin-1 is a very useful and dependable marker for the measurable residual disease assessment of B-cell precursor acute lymphoblastic leukemia. Gudapati P; Khanka T; Chatterjee G; Ghogale S; Badrinath Y; Deshpande N; Patil J; Narula G; Shetty D; Banavali S; Patkar NV; Gujral S; Subramanian PG; Tembhare PR Cytometry B Clin Cytom; 2020 Jul; 98(4):328-335. PubMed ID: 31944572 [TBL] [Abstract][Full Text] [Related]
17. Close interaction with bone marrow mesenchymal stromal cells induces the development of cancer stem cell-like immunophenotype in B cell precursor acute lymphoblastic leukemia cells. Kihira K; Chelakkot VS; Kainuma H; Okumura Y; Tsuboya N; Okamura S; Kurihara K; Iwamoto S; Komada Y; Hori H Int J Hematol; 2020 Dec; 112(6):795-806. PubMed ID: 32862292 [TBL] [Abstract][Full Text] [Related]
18. Deciphering stage 0 hematogones by flow cytometry in follow-up bone marrow samples of pediatric B-Acute lymphoblastic leukemia cases: A potential mimicker of residual disease after anti CD19 therapy. Ramalingam TR; Vaidhyanathan L; Muthu A; Swaminathan VV; Uppuluri R; Raj R Cytometry B Clin Cytom; 2024 Mar; 106(2):92-98. PubMed ID: 38243626 [TBL] [Abstract][Full Text] [Related]
19. Minimal residual disease analysis by eight-color flow cytometry in relapsed childhood acute lymphoblastic leukemia. Karawajew L; Dworzak M; Ratei R; Rhein P; Gaipa G; Buldini B; Basso G; Hrusak O; Ludwig WD; Henze G; Seeger K; von Stackelberg A; Mejstrikova E; Eckert C Haematologica; 2015 Jul; 100(7):935-44. PubMed ID: 26001791 [TBL] [Abstract][Full Text] [Related]
20. High frequency of heat shock protein 27 overexpression is a highly effective, high-coverage marker for minimal residual disease detection in children with B-cell acute lymphoblastic leukemia. Chou SW; Su YH; Lu MY; Chang HH; Yang YL; Lin DT; Lin KH; Coustan-Smith E; Jou ST Pediatr Blood Cancer; 2023 Jan; 70(1):e29990. PubMed ID: 36250996 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]