BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 10210525)

  • 1. A quantitative autoradiographic comparison of binding to glutamate receptor sub-types in hippocampus and forebrain regions of a food-storing and a non-food-storing bird.
    Stewart MG; Cristol D; Philips R; Steele RJ; Stamatakis A; Harrison E; Clayton N
    Behav Brain Res; 1999 Jan; 98(1):89-94. PubMed ID: 10210525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of memory and the hippocampus: comparison of food-storing and nonstoring birds on a one-trial associative memory task.
    Clayton NS
    J Neurosci; 1995 Apr; 15(4):2796-807. PubMed ID: 7722629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of hippocampal specialisation in two species of tit (Parus spp.).
    Healy SD; Clayton NS; Krebs JR
    Behav Brain Res; 1994 Mar; 61(1):23-8. PubMed ID: 8031493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative Autoradiographic Demonstration of Changes in Binding to NMDA-sensitive [3H]Glutamate and [3H]MK801, but not [3H]AMPA Receptors in Chick Forebrain 30 min After Passive Avoidance Training.
    Stewart MG; Bourne RC; Steele RJ
    Eur J Neurosci; 1992; 4(10):936-943. PubMed ID: 12106429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autoradiographic characterization of [3H]6-cyano-7-nitroquinoxaline-2,3-dione binding sites in adult chick brain.
    Zavitsanou K; Mitsacos A; Kouvelas ED
    Neuroscience; 1994 Oct; 62(3):955-62. PubMed ID: 7532837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Food storing and the hippocampus in Paridae.
    Healy SD; Krebs JR
    Brain Behav Evol; 1996; 47(4):195-9. PubMed ID: 9156782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increases in NMDA receptor binding are specifically related to memory formation for a passive avoidance task in the chick: a quantitative autoradiographic study.
    Steele RJ; Stewart MG; Rose SP
    Brain Res; 1995 Mar; 674(2):352-6. PubMed ID: 7796116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro autoradiography of ionotropic glutamate receptors in hippocampus and striatum of aged Long-Evans rats: relationship to spatial learning.
    Nicolle MM; Bizon JL; Gallagher M
    Neuroscience; 1996 Oct; 74(3):741-56. PubMed ID: 8884770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionotropic glutamate receptors and expression of N-methyl-D-aspartate receptor subunits in subregions of human hippocampus: effects of schizophrenia.
    Gao XM; Sakai K; Roberts RC; Conley RR; Dean B; Tamminga CA
    Am J Psychiatry; 2000 Jul; 157(7):1141-9. PubMed ID: 10873924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMDA and non-NMDA sensitive [L-3H]glutamate receptor binding in the brain of the Naples high- and low-excitability rats: an autoradiographic study.
    Sadile AG; Pellicano MP; Sagvolden T; Sergeant JA
    Behav Brain Res; 1996 Aug; 78(2):163-74. PubMed ID: 8864048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative studies of food-storing, memory, and the hippocampal formation in parids.
    Clayton NS
    Hippocampus; 1995; 5(6):499-510. PubMed ID: 8646278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of food-storing and the hippocampus in juvenile marsh tits (Parus palustris).
    Clayton NS
    Behav Brain Res; 1996 Jan; 74(1-2):153-9. PubMed ID: 8851924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative autoradiographic demonstration of changes in binding to delta opioid, but not mu or kappa receptors, in chick forebrain 30 minutes after passive avoidance training.
    Csillag A; Stewart MG; Székely AD; Maglóczky Z; Bourne RC; Steele RJ
    Brain Res; 1993 Jun; 613(1):96-105. PubMed ID: 8394181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regional variations in [3H]MK801 binding to rat brain N-methyl-D-aspartate receptors.
    Reynolds IJ; Palmer AM
    J Neurochem; 1991 May; 56(5):1731-40. PubMed ID: 1826521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autoradiographic characterization of N-methyl-D-aspartate-, quisqualate- and kainate-sensitive glutamate binding sites.
    Greenamyre JT; Olson JM; Penney JB; Young AB
    J Pharmacol Exp Ther; 1985 Apr; 233(1):254-63. PubMed ID: 2984415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutamate receptors in the postmortem striatum of schizophrenic, suicide, and control brains.
    Noga JT; Hyde TM; Herman MM; Spurney CF; Bigelow LB; Weinberger DR; Kleinman JE
    Synapse; 1997 Nov; 27(3):168-76. PubMed ID: 9329152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hippocampal N-methyl-D-aspartate and kainate binding in response to entorhinal cortex aspiration or 192 IgG-saporin lesions of the basal forebrain.
    Nicolle MM; Shivers A; Gill TM; Gallagher M
    Neuroscience; 1997 Apr; 77(3):649-59. PubMed ID: 9070742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Postsynaptic factors in the expression of long-term potentiation (LTP): increased glutamate receptor binding following LTP induction in vivo.
    Maren S; Tocco G; Standley S; Baudry M; Thompson RF
    Proc Natl Acad Sci U S A; 1993 Oct; 90(20):9654-8. PubMed ID: 8415757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutamate receptors and persistent pain: targeting forebrain NR2B subunits.
    Zhuo M
    Drug Discov Today; 2002 Feb; 7(4):259-67. PubMed ID: 11839523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Region-specific expression of subunits of ionotropic glutamate receptors (AMPA-type, KA-type and NMDA receptors) in the rat spinal cord with special reference to nociception.
    Furuyama T; Kiyama H; Sato K; Park HT; Maeno H; Takagi H; Tohyama M
    Brain Res Mol Brain Res; 1993 Apr; 18(1-2):141-51. PubMed ID: 8097549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.