These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 10210525)

  • 21. [3H]CNQX and NMDA-sensitive [3H]glutamate binding sites and AMPA receptor subunit RNA transcripts in the striatum of normal and weaver mutant mice and effects of ventral mesencephalic grafts.
    Mitsacos A; Tomiyama M; Stasi K; Giompres P; Kouvelas ED; Cortés R; Palacios JM; Mengod G; Triarhou LC
    Cell Transplant; 1999; 8(1):11-23. PubMed ID: 10338272
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ionotropic glutamate receptor subtypes in the aged memory-impaired and unimpaired Long-Evans rat.
    Le Jeune H; Cécyre D; Rowe W; Meaney MJ; Quirion R
    Neuroscience; 1996 Sep; 74(2):349-63. PubMed ID: 8865188
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ionotropic glutamate and GABA receptors in human epileptic neocortical tissue: quantitative in vitro receptor autoradiography.
    Zilles K; Qü MS; Köhling R; Speckmann EJ
    Neuroscience; 1999; 94(4):1051-61. PubMed ID: 10625047
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential ontogenic development of three receptors comprising the NMDA receptor/channel complex in the rat hippocampus.
    McDonald JW; Johnston MV; Young AB
    Exp Neurol; 1990 Dec; 110(3):237-47. PubMed ID: 2174375
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Relative hippocampal volume in relation to food-storing behavior in four species of woodpeckers.
    Volman SF; Grubb TC; Schuett KC
    Brain Behav Evol; 1997; 49(2):110-20. PubMed ID: 9031734
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Loss of [3H]kainate and of NMDA-displaceable [3H]glutamate binding sites in brain in thiamine deficiency: results of a quantitative autoradiographic study.
    Peterson C; Héroux M; Lavoie J; Butterworth RF
    Neurochem Res; 1995 Oct; 20(10):1155-60. PubMed ID: 8746800
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ca2+-permeable non-NMDA glutamate receptors in rat magnocellular basal forebrain neurones.
    Waters DJ; Allen TG
    J Physiol; 1998 Apr; 508 ( Pt 2)(Pt 2):453-69. PubMed ID: 9508809
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative analysis of the distributions of glutamatergic ligand binding sites in goldfish brain.
    Barnes JM; Henley JM
    Brain Res; 1994 Feb; 637(1-2):323-7. PubMed ID: 7910103
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nucleus-specific expression of ionotropic glutamate receptor subunit mRNAs and binding sites in primate thalamus.
    Ibrahim HM; Healy DJ; Hogg AJ; Meador-Woodruff JH
    Brain Res Mol Brain Res; 2000 Jun; 79(1-2):1-17. PubMed ID: 10925139
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of the glutamate receptors mediating release of somatostatin from cultured hippocampal neurons.
    Fontana G; De Bernardi R; Ferro F; Gemignani A; Raiteri M
    J Neurochem; 1996 Jan; 66(1):161-8. PubMed ID: 8522949
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of neonatal cholinergic basal forebrain lesions on excitatory amino acid receptors in neocortex.
    Hohmann CF; Wallace SA; Johnston MV; Blue ME
    Int J Dev Neurosci; 1998; 16(7-8):645-60. PubMed ID: 10198813
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NMDA receptors in rat cerebellum and forebrain: subtle differences in pharmacology and modulation.
    Widdowson PS; Trainor A; Lock EA
    J Neurochem; 1995 Feb; 64(2):651-61. PubMed ID: 7830058
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hippocampus and memory in a food-storing and in a nonstoring bird species.
    Hampton RR; Shettleworth SJ
    Behav Neurosci; 1996 Oct; 110(5):946-64. PubMed ID: 8918998
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential expression of NMDA and AMPA receptor subunits in DARPP-32-containing neurons of the cerebral cortex, hippocampus and neostriatum of rats.
    Wang WW; Cao R; Rao ZR; Chen LW
    Brain Res; 2004 Feb; 998(2):174-83. PubMed ID: 14751588
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative autoradiographic analysis of ionotropic glutamate receptor subtypes in human temporal lobe epilepsy: up-regulation in reorganized epileptogenic hippocampus.
    Brines ML; Sundaresan S; Spencer DD; de Lanerolle NC
    Eur J Neurosci; 1997 Oct; 9(10):2035-44. PubMed ID: 9421164
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Morphine induction of c-fos expression in the rat forebrain through glutamatergic mechanisms: role of non-n-methyl-D-aspartate receptors.
    Garcia MM; Anderson AT; Edwards R; Harlan RE
    Neuroscience; 2003; 119(3):787-94. PubMed ID: 12809699
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regionally different N-methyl-D-aspartate receptors distinguished by ligand binding and quantitative autoradiography of [3H]-CGP 39653 in rat brain.
    Mugnaini M; van Amsterdam FT; Ratti E; Trist DG; Bowery NG
    Br J Pharmacol; 1996 Nov; 119(5):819-28. PubMed ID: 8922727
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A study of cortical and hippocampal NMDA and PCP receptors following selective cortical and subcortical lesions.
    Maragos WF; Greenamyre JT; Chu DC; Penney JB; Young AB
    Brain Res; 1991 Jan; 538(1):36-45. PubMed ID: 1850317
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stable maintenance of glutamate receptors and other synaptic components in long-term hippocampal slices.
    Bahr BA; Kessler M; Rivera S; Vanderklish PW; Hall RA; Mutneja MS; Gall C; Hoffman KB
    Hippocampus; 1995; 5(5):425-39. PubMed ID: 8773255
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Selective alterations in glutamate receptor subtypes after unilateral orbital enucleation.
    Chalmers DT; McCulloch J
    Brain Res; 1991 Feb; 540(1-2):255-65. PubMed ID: 1647245
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.