These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 10210663)

  • 1. Design features for electric communication.
    Hopkins CD
    J Exp Biol; 1999 May; 202(Pt 10):1217-28. PubMed ID: 10210663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal structure of non-propagated electric communication signals.
    Hopkins CD
    Brain Behav Evol; 1986; 28(1-3):43-59. PubMed ID: 3567540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insight into the mechanisms of neuronal processing from electric fish.
    Zakon HH
    Curr Opin Neurobiol; 2003 Dec; 13(6):744-50. PubMed ID: 14662377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric organ discharges of the gymnotiform fishes: III. Brachyhypopomus.
    Stoddard PK; Rasnow B; Assad C
    J Comp Physiol A; 1999 Jun; 184(6):609-30. PubMed ID: 10418155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behavioral and Single-Neuron Sensitivity to Millisecond Variations in Temporally Patterned Communication Signals.
    Baker CA; Ma L; Casareale CR; Carlson BA
    J Neurosci; 2016 Aug; 36(34):8985-9000. PubMed ID: 27559179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast traveling wave dominates the electric organ discharge of Apteronotus leptorhynchus: an inverse modelling study.
    Shifman AR; Longtin A; Lewis JE
    Sci Rep; 2015 Oct; 5():15780. PubMed ID: 26514932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ontogeny of electric organ and electric organ discharge in Campylomormyrus rhynchophorus (Teleostei: Mormyridae).
    Nguyen L; Mamonekene V; Vater M; Bartsch P; Tiedemann R; Kirschbaum F
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2020 May; 206(3):453-466. PubMed ID: 32112119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electric field interactions in pairs of electric fish: modeling and mimicking naturalistic inputs.
    Kelly M; Babineau D; Longtin A; Lewis JE
    Biol Cybern; 2008 Jun; 98(6):479-90. PubMed ID: 18491161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Melanocortins regulate the electric waveforms of gymnotiform electric fish.
    Markham MR; Allee SJ; Goldina A; Stoddard PK
    Horm Behav; 2009 Feb; 55(2):306-13. PubMed ID: 19063894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hormonal modulation of communication signals in electric fish.
    Zakon HH
    Dev Neurosci; 1996; 18(1-2):115-23. PubMed ID: 8840090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time domain processing of electric organ discharge waveforms by pulse-type electric fish.
    Hopkins CD; Westby GW
    Brain Behav Evol; 1986; 29(1-2):77-104. PubMed ID: 3594199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in electric organ discharge after pausing the electromotor system of Gymnotus carapo.
    Schuster S
    J Exp Biol; 2000 May; 203(Pt 9):1433-46. PubMed ID: 10751159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sound production to electric discharge: sonic muscle evolution in progress in Synodontis spp. catfishes (Mochokidae).
    Boyle KS; Colleye O; Parmentier E
    Proc Biol Sci; 2014 Sep; 281(1791):20141197. PubMed ID: 25080341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of social interaction on the electric organ discharge in a mormyrid fish, Gnathonemus petersii (Mormyridae, Teleostei).
    Terleph TA; Moller P
    J Exp Biol; 2003 Jul; 206(Pt 14):2355-62. PubMed ID: 12796452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics and stimulus-dependence of pacemaker control during behavioral modulations in the weakly electric fish, Apteronotus.
    Dye J
    J Comp Physiol A; 1987 Aug; 161(2):175-85. PubMed ID: 3625571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms for generating temporal filters in the electrosensory system.
    Rose GJ; Fortune ES
    J Exp Biol; 1999 May; 202(Pt 10):1281-9. PubMed ID: 10210668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The evolutionary origins of electric signal complexity.
    Stoddard PK
    J Physiol Paris; 2002; 96(5-6):485-91. PubMed ID: 14692496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signal Diversification Is Associated with Corollary Discharge Evolution in Weakly Electric Fish.
    Fukutomi M; Carlson BA
    J Neurosci; 2020 Aug; 40(33):6345-6356. PubMed ID: 32661026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circadian rhythms in electric waveform structure and rate in the electric fish Brachyhypopomus pinnicaudatus.
    Stoddard PK; Markham MR; Salazar VL; Allee S
    Physiol Behav; 2007 Jan; 90(1):11-20. PubMed ID: 16996093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of difference frequency on electrocommunication: chirp production and encoding in a species of weakly electric fish, Apteronotus leptorhynchus.
    Hupé GJ; Lewis JE; Benda J
    J Physiol Paris; 2008; 102(4-6):164-72. PubMed ID: 18984046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.