These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 10210683)

  • 21. Androgens alter electric organ discharge pulse duration despite stability in electric organ discharge frequency.
    Few WP; Zakon HH
    Horm Behav; 2001 Nov; 40(3):434-42. PubMed ID: 11673917
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conductances contributing to the action potential of Sternopygus electrocytes.
    Ferrari MB; Zakon HH
    J Comp Physiol A; 1993 Sep; 173(3):281-92. PubMed ID: 8229895
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanisms of muscle gene regulation in the electric organ of Sternopygus macrurus.
    Güth R; Pinch M; Unguez GA
    J Exp Biol; 2013 Jul; 216(Pt 13):2469-77. PubMed ID: 23761472
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anatomy and motor pathways of the electric organ of skates.
    Koester DM
    Anat Rec A Discov Mol Cell Evol Biol; 2003 Jul; 273(1):648-62. PubMed ID: 12808649
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Waveform generation in the weakly electric fish Gymnotus coropinae (Hoedeman): the electric organ and the electric organ discharge.
    Castelló ME; Rodríguez-Cattáneo A; Aguilera PA; Iribarne L; Pereira AC; Caputi AA
    J Exp Biol; 2009 May; 212(Pt 9):1351-64. PubMed ID: 19376956
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sound production to electric discharge: sonic muscle evolution in progress in Synodontis spp. catfishes (Mochokidae).
    Boyle KS; Colleye O; Parmentier E
    Proc Biol Sci; 2014 Sep; 281(1791):20141197. PubMed ID: 25080341
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Activation of Pax7-positive cells in a non-contractile tissue contributes to regeneration of myogenic tissues in the electric fish S. macrurus.
    Weber CM; Martindale MQ; Tapscott SJ; Unguez GA
    PLoS One; 2012; 7(5):e36819. PubMed ID: 22685526
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Innervation pattern and electric organ discharge waveform in Gymnotus carapo (Teleostei; Gymnotiformes).
    Trujillo-Cenóz O; Echagüe JA; Macadar O
    J Neurobiol; 1984 Jul; 15(4):273-81. PubMed ID: 6090586
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cell death of asynaptic neurons in regenerating spinal cord.
    Anderson MJ; Waxman SG; Tadlock CH
    Dev Biol; 1984 Jun; 103(2):443-55. PubMed ID: 6724138
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential expression of genes and proteins between electric organ and skeletal muscle in the mormyrid electric fish Brienomyrus brachyistius.
    Gallant JR; Hopkins CD; Deitcher DL
    J Exp Biol; 2012 Jul; 215(Pt 14):2479-94. PubMed ID: 22723488
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Signal variation and its morphological correlates in Paramormyrops kingsleyae provide insight into the evolution of electrogenic signal diversity in mormyrid electric fish.
    Gallant JR; Arnegard ME; Sullivan JP; Carlson BA; Hopkins CD
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Aug; 197(8):799-817. PubMed ID: 21505877
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Torpedo electromotor system development: a quantitative analysis of synaptogenesis.
    Fox GQ; Kötting D
    J Comp Neurol; 1984 Apr; 224(3):337-43. PubMed ID: 6715583
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Co-distribution of tropomyosin and alpha-actinin with actin in Psammobatis extenta electrocytes brings out their similarity with muscle fiber cytoplasm.
    Vidal A; Prado Figueroa M; Eberwein ME; Kreda S; Barrantes FJ
    Comp Biochem Physiol A Physiol; 1997 Feb; 116(2):113-8. PubMed ID: 9011031
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Individual variation in and androgen-modulation of the sodium current in electric organ.
    Ferrari MB; McAnelly ML; Zakon HH
    J Neurosci; 1995 May; 15(5 Pt 2):4023-32. PubMed ID: 7751963
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Weakly electric fish as model systems for studying long-term steroid action on neural circuits.
    Zakon HH
    Brain Behav Evol; 1993; 42(4-5):242-51. PubMed ID: 8252376
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the development of the adult electric organ in the mormyrid fish Pollimyrus isidori (with special focus on the innervation).
    Denizot JP; Kirschbaum F; Max Westby GW; Tsuji S
    J Neurocytol; 1982 Dec; 11(6):913-34. PubMed ID: 7153789
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Zebrin II distinguishes the ampullary organ receptive map from the tuberous organ receptive maps during development in the teleost electrosensory lateral line lobe.
    Lannoo MJ; Maler L; Hawkes R
    Brain Res; 1992 Jul; 586(1):176-80. PubMed ID: 1511347
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Morphological, physiological and biochemical observations on skate electric organ.
    Fox GQ; Kriebel ME; Pappas GD
    Anat Embryol (Berl); 1990; 181(4):305-15. PubMed ID: 2161187
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Cytoembryologic aspects of evolution of specialized electric organs of fishes].
    Labas IuA; Cherdantsev VG; Glukhova EN
    Zh Obshch Biol; 2000; 61(6):616-37. PubMed ID: 11190563
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Species differences in electric organs of mormyrids: substrates for species-typical electric organ discharge waveforms.
    Bass AH
    J Comp Neurol; 1986 Feb; 244(3):313-30. PubMed ID: 3958230
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.