BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 10210724)

  • 1. Hyaluronic acid grafted with poly(ethylene glycol) as a novel peptide formulation.
    Moriyama K; Ooya T; Yui N
    J Control Release; 1999 May; 59(1):77-86. PubMed ID: 10210724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-viral vector delivery from PEG-hyaluronic acid hydrogels.
    Wieland JA; Houchin-Ray TL; Shea LD
    J Control Release; 2007 Jul; 120(3):233-41. PubMed ID: 17582640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and characterization of HA-PEG-PCL intelligent core-corona nanoparticles for delivery of doxorubicin.
    Yadav AK; Mishra P; Jain S; Mishra P; Mishra AK; Agrawal GP
    J Drug Target; 2008 Jul; 16(6):464-78. PubMed ID: 18604659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and characterization of hyaluronic acid-anchored PLGA nanoparticulate carriers of doxorubicin.
    Yadav AK; Mishra P; Mishra AK; Mishra P; Jain S; Agrawal GP
    Nanomedicine; 2007 Dec; 3(4):246-57. PubMed ID: 18068091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of insulin-loaded poly(ethylene glycol)/poly(l-lactide) (PEG/PLA) nanoparticles by gas antisolvent techniques.
    Elvassore N; Bertucco A; Caliceti P
    J Pharm Sci; 2001 Oct; 90(10):1628-36. PubMed ID: 11745721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomineralized biomimetic organic/inorganic hybrid hydrogels based on hyaluronic acid and poloxamer.
    Huh HW; Zhao L; Kim SY
    Carbohydr Polym; 2015 Aug; 126():130-40. PubMed ID: 25933531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of a novel excipient poly(ethylene glycol)-b-poly(L-histidine) in retention of physical stability of insulin at aqueous/organic interface.
    Taluja A; Bae YH
    Mol Pharm; 2007; 4(4):561-70. PubMed ID: 17439239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of hyaluronic acid-poly(ethylene glycol) hydrogels via Michael addition: An injectable biomaterial for cartilage repair.
    Jin R; Moreira Teixeira LS; Krouwels A; Dijkstra PJ; van Blitterswijk CA; Karperien M; Feijen J
    Acta Biomater; 2010 Jun; 6(6):1968-77. PubMed ID: 20025999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of poly(ethylene glycol) content and formulation parameters on particulate properties and intraperitoneal delivery of insulin from PLGA nanoparticles prepared using the double-emulsion evaporation procedure.
    Haggag YA; Faheem AM; Tambuwala MM; Osman MA; El-Gizawy SA; O'Hagan B; Irwin N; McCarron PA
    Pharm Dev Technol; 2018 Apr; 23(4):370-381. PubMed ID: 28285551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene oxide stabilized by PLA-PEG copolymers for the controlled delivery of paclitaxel.
    Angelopoulou A; Voulgari E; Diamanti EK; Gournis D; Avgoustakis K
    Eur J Pharm Biopharm; 2015 Jun; 93():18-26. PubMed ID: 25817600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Injectable hyaluronic acid/poly(ethylene glycol) hydrogels crosslinked via strain-promoted azide-alkyne cycloaddition click reaction.
    Fu S; Dong H; Deng X; Zhuo R; Zhong Z
    Carbohydr Polym; 2017 Aug; 169():332-340. PubMed ID: 28504153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pulsatile peptide release from multi-layered hydrogel formulations consisting of poly(ethylene glycol)-grafted and ungrafted dextrans.
    Moriyama K; Ooya T; Yui N
    J Biomater Sci Polym Ed; 1999; 10(12):1251-64. PubMed ID: 10673020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatically degradable temperature-sensitive polypeptide as a new in-situ gelling biomaterial.
    Jeong Y; Joo MK; Bahk KH; Choi YY; Kim HT; Kim WK; Lee HJ; Sohn YS; Jeong B
    J Control Release; 2009 Jul; 137(1):25-30. PubMed ID: 19306901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photopolymerized hyaluronic acid-based hydrogels and interpenetrating networks.
    Park YD; Tirelli N; Hubbell JA
    Biomaterials; 2003 Mar; 24(6):893-900. PubMed ID: 12504509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PLGA-PEG microspheres of teverelix: influence of polymer type on microsphere characteristics and on teverelix in vitro release.
    Mallardé D; Boutignon F; Moine F; Barré E; David S; Touchet H; Ferruti P; Deghenghi R
    Int J Pharm; 2003 Aug; 261(1-2):69-80. PubMed ID: 12878396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyaluronic acid-g-PPG and PEG-PPG-PEG hybrid thermogel for prolonged gel stability and sustained drug release.
    Kim S; Lee HJ; Jeong B
    Carbohydr Polym; 2022 Sep; 291():119559. PubMed ID: 35698385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semi-interpenetrating networks of hyaluronic acid in degradable PEG hydrogels for cartilage tissue engineering.
    Skaalure SC; Dimson SO; Pennington AM; Bryant SJ
    Acta Biomater; 2014 Aug; 10(8):3409-20. PubMed ID: 24769116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailored protein release from biodegradable poly(ε-caprolactone-PEG)-b-poly(ε-caprolactone) multiblock-copolymer implants.
    Stanković M; Tomar J; Hiemstra C; Steendam R; Frijlink HW; Hinrichs WL
    Eur J Pharm Biopharm; 2014 Jul; 87(2):329-37. PubMed ID: 24602675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein release from water-swellable poly(D,L-lactide-PEG)-b-poly(ϵ-caprolactone) implants.
    Stanković M; Hiemstra C; de Waard H; Zuidema J; Steendam R; Frijlink HW; Hinrichs WL
    Int J Pharm; 2015 Mar; 480(1-2):73-83. PubMed ID: 25575472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermoresponsive biodegradable PEG-PCL-PEG based injectable hydrogel for pulsatile insulin delivery.
    Payyappilly S; Dhara S; Chattopadhyay S
    J Biomed Mater Res A; 2014 May; 102(5):1500-9. PubMed ID: 23681592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.