These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 10211448)

  • 1. A one-dimensional unsteady separable and reattachable flow model for collapsible tube-flow analysis.
    Ikeda T; Matsuzaki Y
    J Biomech Eng; 1999 Apr; 121(2):153-9. PubMed ID: 10211448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experiments on steady and oscillatory flows at moderate Reynolds numbers in a quasi-two-dimensional channel with a throat.
    Matsuzaki Y; Ikeda T; Matsumoto T; Kitagawa T
    J Biomech Eng; 1998 Oct; 120(5):594-601. PubMed ID: 10412436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical analysis for stability and self-excited oscillation in collapsible tube flow.
    Hayashi S; Hayase T; Kawamura H
    J Biomech Eng; 1998 Aug; 120(4):468-75. PubMed ID: 10412417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of flow in a two-dimensional collapsible channel using universal "tube" law.
    Matsuzaki Y; Ikeda T; Kitagawa T; Sakata S
    J Biomech Eng; 1994 Nov; 116(4):469-76. PubMed ID: 7869723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Longitudinal tension variation in collapsible channels: a new mechanism for the breakdown of steady flow.
    Pedley TJ
    J Biomech Eng; 1992 Feb; 114(1):60-7. PubMed ID: 1491588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steady flow through collapsible tubes: measurements of flow and geometry.
    Elad D; Sahar M; Avidor JM; Einav S
    J Biomech Eng; 1992 Feb; 114(1):84-91. PubMed ID: 1491591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chaotic oscillations in a simple collapsible-tube model.
    Jensen OE
    J Biomech Eng; 1992 Feb; 114(1):55-9. PubMed ID: 1491587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow in a two-dimensional collapsible channel with rigid inlet and outlet.
    Matsuzaki Y; Matsumoto T
    J Biomech Eng; 1989 Aug; 111(3):180-4. PubMed ID: 2779181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mathematical model of unsteady collapsible tube behaviour.
    Bertram CD; Pedley TJ
    J Biomech; 1982; 15(1):39-50. PubMed ID: 7061526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional simulation of blood flow in an abdominal aortic aneurysm--steady and unsteady flow cases.
    Taylor TW; Yamaguchi T
    J Biomech Eng; 1994 Feb; 116(1):89-97. PubMed ID: 8189719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An asymptotic model of viscous flow limitation in a highly collapsed channel.
    Jensen OE
    J Biomech Eng; 1998 Aug; 120(4):544-6. PubMed ID: 10412429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical solutions for steady and unsteady flow in a model of the pulmonary airways.
    Kimmel E; Kamm RD; Shapiro AH
    J Biomech Eng; 1988 Nov; 110(4):292-9. PubMed ID: 3205014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of flow in numerical and physical models of a ventricular assist device using low- and high-viscosity fluids.
    König CS; Clark C; Mokhtarzadeh-Dehghan MR
    Proc Inst Mech Eng H; 1999; 213(5):423-32. PubMed ID: 10581969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A one-dimensional viscous-inviscid strong interaction model for flow in indented channels with separation and reattachment.
    Kalse SG; Bijl H; van Oudheusden BW
    J Biomech Eng; 2003 Jun; 125(3):355-62. PubMed ID: 12929240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated computation of finite-time Lyapunov exponent fields during direct numerical simulation of unsteady flows.
    Finn J; Apte SV
    Chaos; 2013 Mar; 23(1):013145. PubMed ID: 23556982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wave motions in a collapsible tube conveying fluid.
    Matsuzaki Y; Matsumoto T
    Monogr Atheroscler; 1990; 15():138-49. PubMed ID: 2296240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pendelluft flow in symmetric airway bifurcations.
    Feng ZC; Poon CS
    J Biomech Eng; 1998 Aug; 120(4):463-7. PubMed ID: 10412416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The flow field downstream of an oscillating collapsed tube.
    Bertram CD; Nugent AH
    J Biomech Eng; 2005 Feb; 127(1):39-45. PubMed ID: 15868787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aeroacoustics of T-junction merging flow.
    Lam GC; Leung RC; Tang SK
    J Acoust Soc Am; 2013 Feb; 133(2):697-708. PubMed ID: 23363089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of glottal cross-section shape on theoretical flow models.
    Wu B; Van Hirtum A; Pelorson X; Luo X
    J Acoust Soc Am; 2013 Aug; 134(2):909-12. PubMed ID: 23927089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.