These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 10211448)

  • 21. Unsteady flow through in-vitro models of the glottis.
    Hofmans GC; Groot G; Ranucci M; Graziani G; Hirschberg A
    J Acoust Soc Am; 2003 Mar; 113(3):1658-75. PubMed ID: 12656399
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computational simulations of vocal fold vibration: Bernoulli versus Navier-Stokes.
    Decker GZ; Thomson SL
    J Voice; 2007 May; 21(3):273-84. PubMed ID: 16504473
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bolus contaminant dispersion for oscillatory flow in a curved tube.
    Jiang Y; Grotberg JB
    J Biomech Eng; 1996 Aug; 118(3):333-40. PubMed ID: 8872255
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Model-based evaluation of eustachian tube mechanical properties using continuous pressure-flow rate data.
    Ghadiali SN; Swarts JD; Federspiel WJ
    Ann Biomed Eng; 2002 Sep; 30(8):1064-76. PubMed ID: 12449767
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mathematica numerical simulation of peristaltic biophysical transport of a fractional viscoelastic fluid through an inclined cylindrical tube.
    Tripathi D; Anwar Bég O
    Comput Methods Biomech Biomed Engin; 2015; 18(15):1648-57. PubMed ID: 25059738
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Valveless pumping in a fluid-filled closed elastic tube-system: one-dimensional theory with experimental validation.
    Ottesen JT
    J Math Biol; 2003 Apr; 46(4):309-32. PubMed ID: 12673509
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A mathematical model of flow through a collapsible tube--I. Model and steady flow results.
    Morgan P; Parker KH
    J Biomech; 1989; 22(11-12):1263-70. PubMed ID: 2625427
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Theoretical and experimental study of intermittent blood flows in microcirculation: application to the in-vivo determination of compliance.
    Guiffant G; Gabet L; Dufaux J
    J Biomech Eng; 1998 Dec; 120(6):737-42. PubMed ID: 10412457
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Laser-Doppler measurements of velocities just downstream of a collapsible tube during flow-induced oscillations.
    Bertram CD; Diaz de Tuesta G; Nugent AH
    J Biomech Eng; 2001 Oct; 123(5):493-9. PubMed ID: 11601735
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On the ejection-induced instability in Navier-Stokes solutions of unsteady separation.
    Obabko AV; Cassel KW
    Philos Trans A Math Phys Eng Sci; 2005 May; 363(1830):1189-98. PubMed ID: 16105779
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Numerical analysis of three-dimensional Björk-Shiley valvular flow in an aorta.
    Shim EB; Chang KS
    J Biomech Eng; 1997 Feb; 119(1):45-51. PubMed ID: 9083848
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physical principles governing the interrelationships of pressure, flow and volume in collapsible tubes.
    Chiles C; Ravin CE
    Invest Radiol; 1981; 16(6):525-7. PubMed ID: 7319761
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A theoretical model of the pressure field arising from asymmetric intraglottal flows applied to a two-mass model of the vocal folds.
    Erath BD; Peterson SD; Zañartu M; Wodicka GR; Plesniak MW
    J Acoust Soc Am; 2011 Jul; 130(1):389-403. PubMed ID: 21786907
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Numerical simulation of steady flow in a model of the aortic bifurcation.
    Thiriet M; Pares C; Saltel E; Hecht F
    J Biomech Eng; 1992 Feb; 114(1):40-9. PubMed ID: 1491585
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unsteady flow phenomena in human undulatory swimming: a numerical approach.
    Pacholak S; Hochstein S; Rudert A; Brücker C
    Sports Biomech; 2014 Jun; 13(2):176-94. PubMed ID: 25123002
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A pressure-gradient mechanism for vortex shedding in constricted channels.
    Boghosian ME; Cassel KW
    Phys Fluids (1994); 2013 Dec; 25(12):123603. PubMed ID: 24399860
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A study of the bifurcation behaviour of a model of flow through a collapsible tube.
    Armitstead JP; Bertram CD; Jensen OE
    Bull Math Biol; 1996 Jul; 58(4):611-41. PubMed ID: 8756267
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Numerical simulation of unsteady generalized Newtonian blood flow through differently shaped distensible arterial stenoses.
    Sarifuddin ; Chakravarty S; Mandal PK; Layek GC
    J Med Eng Technol; 2008; 32(5):385-99. PubMed ID: 18821416
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the existence and multiplicity of one-dimensional solid particle attractors in time-dependent Rayleigh-Bénard convection.
    Lappa M
    Chaos; 2013 Mar; 23(1):013105. PubMed ID: 23556942
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Flow through a collapsible tube. Experimental analysis and mathematical model.
    Katz AI; Chen Y; Moreno AH
    Biophys J; 1969 Oct; 9(10):1261-79. PubMed ID: 5824415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.