These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 10212062)

  • 41. Dissociation of interference with the speed and accuracy of escape produced by inescapable shock.
    Maier SF; Minor TR
    Behav Neurosci; 1993 Feb; 107(1):139-46. PubMed ID: 8383499
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of acute exposure to stressors on subsequent avoidance-escape behavior.
    Weiss JM; Glazer HI
    Psychosom Med; 1975; 37(6):499-521. PubMed ID: 1239037
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Autoreceptor-mediated inhibition of norepinephrine release in rat medial prefrontal cortex is maintained after chronic desipramine treatment.
    Garcia AS; Barrera G; Burke TF; Ma S; Hensler JG; Morilak DA
    J Neurochem; 2004 Nov; 91(3):683-93. PubMed ID: 15485498
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Agonistic behavior during stress inhibits the development of learned helplessness in rats].
    Zhukov DA; Vinogradova EP
    Fiziol Zh Im I M Sechenova; 1996 Dec; 82(12):6-11. PubMed ID: 9181945
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Chlordiazepoxide microinjected into the region of the dorsal raphe nucleus eliminates the interference with escape responding produced by inescapable shock whether administered before inescapable shock or escape testing.
    Maier SF; Kalman BA; Grahn RE
    Behav Neurosci; 1994 Feb; 108(1):121-30. PubMed ID: 8192838
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Remodeling of hippocampal spine synapses in the rat learned helplessness model of depression.
    Hajszan T; Dow A; Warner-Schmidt JL; Szigeti-Buck K; Sallam NL; Parducz A; Leranth C; Duman RS
    Biol Psychiatry; 2009 Mar; 65(5):392-400. PubMed ID: 19006787
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The involvement of endogenous opiate systems in learned helplessness and stress-induced analgesia.
    Hemingway RB; Reigle TG
    Psychopharmacology (Berl); 1987; 93(3):353-7. PubMed ID: 3124164
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Blockade of alpha1 adrenoreceptors in the dorsal raphe nucleus prevents enhanced conditioned fear and impaired escape performance following uncontrollable stressor exposure in rats.
    Grahn RE; Hammack SE; Will MJ; O'Connor KA; Deak T; Sparks PD; Watkins LR; Maier SF
    Behav Brain Res; 2002 Aug; 134(1-2):387-92. PubMed ID: 12191825
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Gangliosides enhance behavioral and neurochemical effects induced by chronic desipramine (DMI) treatment.
    Molina VA; Keller EA; Orsingher OA
    Eur J Pharmacol; 1989 Jan; 160(2):247-52. PubMed ID: 2547628
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of morphine, naloxone and their interaction in the learned-helplessness paradigm in rats.
    Besson A; Privat AM; Eschalier A; Fialip J
    Psychopharmacology (Berl); 1996 Jan; 123(1):71-8. PubMed ID: 8741957
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modeling signal features of escape response: effects of cessation conditioning in "learned helplessness" paradigm.
    Minor TR; Trauner MA; Lee CY; Dess NK
    J Exp Psychol Anim Behav Process; 1990 Apr; 16(2):123-36. PubMed ID: 2335768
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of ipsapirone and BAY R 1531 on learned helplessness.
    Graeff EO; Hunziker MH; Graeff FG
    Braz J Med Biol Res; 1989; 22(9):1141-4. PubMed ID: 2636009
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evidence for a serotonergic mechanism of the learned helplessness phenomenon.
    Brown L; Rosellini RA; Samuels OB; Riley EP
    Pharmacol Biochem Behav; 1982 Nov; 17(5):877-83. PubMed ID: 6891069
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Loss of rat cerebral cortical opiate receptors following chronic desimipramine treatment.
    Reisine T; Soubrie P
    Eur J Pharmacol; 1982 Jan; 77(1):39-44. PubMed ID: 6277652
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Different opioid systems may participate in post-electro-convulsive shock (ECS) analgesia and catalepsy.
    Urca G; Yitzhaky J; Frenk H
    Brain Res; 1981 Aug; 219(2):385-96. PubMed ID: 6266608
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of desipramine treatment on tyrosine hydroxylase gene expression in cultured neuroblastoma cells and rat brain tissue.
    Zhu MY; Wang WP; Baldessarini RJ; Kim KS
    Brain Res Mol Brain Res; 2005 Feb; 133(2):167-75. PubMed ID: 15710233
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Escape deficits induced by a biologically relevant stressor in the slug (Limax maximus).
    Brown GE; Davenport DA; Howe AR
    Psychol Rep; 1994 Dec; 75(3 Pt 1):1187-92. PubMed ID: 7892381
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Monamines as mediators of avoidance-escape behavior.
    Glazer HI; Weiss JM; Pohorecky LA; Miller NE
    Psychosom Med; 1975; 37(6):535-43. PubMed ID: 1239038
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sex-dependent effects of inescapable shock administration on behavior and subsequent escape performance in rats.
    Steenbergen HL; Heinsbroek RP; Van Haaren F; Van de Poll NE
    Physiol Behav; 1989 Apr; 45(4):781-7. PubMed ID: 2780848
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Emergence and development of stress-induced analgesia and concomitant behavioral changes in mice exposed to social conflict.
    Frischknecht HR; Siegfried B
    Physiol Behav; 1988; 44(3):383-8. PubMed ID: 2851847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.