BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 10212476)

  • 1. Multitude of ion channels in the regulation of transmitter release.
    Rahamimoff R; Butkevich A; Duridanova D; Ahdut R; Harari E; Kachalsky SG
    Philos Trans R Soc Lond B Biol Sci; 1999 Feb; 354(1381):281-8. PubMed ID: 10212476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Currents and channels in the presynaptic nerve terminal.
    Meir A; Edry-Schiller J; Habartova A; Mahinson H; Rahamimoff R
    Isr J Med Sci; 1993 Sep; 29(9):517-29. PubMed ID: 7693613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N type Ca2+ channels and RIM scaffold protein covary at the presynaptic transmitter release face but are components of independent protein complexes.
    Khanna R; Li Q; Sun L; Collins TJ; Stanley EF
    Neuroscience; 2006 Jul; 140(4):1201-8. PubMed ID: 16757118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Masters or slaves? Vesicle release machinery and the regulation of presynaptic calcium channels.
    Jarvis SE; Zamponi GW
    Cell Calcium; 2005 May; 37(5):483-8. PubMed ID: 15820397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Presynaptic calcium and control of vesicle fusion.
    Schneggenburger R; Neher E
    Curr Opin Neurobiol; 2005 Jun; 15(3):266-74. PubMed ID: 15919191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions between proteins implicated in exocytosis and voltage-gated calcium channels.
    Seagar M; Lévêque C; Charvin N; Marquèze B; Martin-Moutot N; Boudier JA; Boudier JL; Shoji-Kasai Y; Sato K; Takahashi M
    Philos Trans R Soc Lond B Biol Sci; 1999 Feb; 354(1381):289-97. PubMed ID: 10212477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion channels in presynaptic nerve terminals and control of transmitter release.
    Meir A; Ginsburg S; Butkevich A; Kachalsky SG; Kaiserman I; Ahdut R; Demirgoren S; Rahamimoff R
    Physiol Rev; 1999 Jul; 79(3):1019-88. PubMed ID: 10390521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Endoplasmic reticulum and regulation of neuromediator release in presynaptic terminals].
    Verkhrats'kyĭ ON; Fedulova SA
    Fiziol Zh (1994); 2004; 50(4):142-9. PubMed ID: 15460039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium channel regulation and presynaptic plasticity.
    Catterall WA; Few AP
    Neuron; 2008 Sep; 59(6):882-901. PubMed ID: 18817729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The proteome of the presynaptic active zone: from docked synaptic vesicles to adhesion molecules and maxi-channels.
    Morciano M; Beckhaus T; Karas M; Zimmermann H; Volknandt W
    J Neurochem; 2009 Feb; 108(3):662-75. PubMed ID: 19187093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmitter metabolism as a mechanism of synaptic plasticity: a modeling study.
    Axmacher N; Stemmler M; Engel D; Draguhn A; Ritz R
    J Neurophysiol; 2004 Jan; 91(1):25-39. PubMed ID: 13679396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probabilistic secretion of quanta at somatic motor-nerve terminals: the fusion-pore model, quantal detection and autoinhibition.
    Thomson PC; Lavidis NA; Robinson J; Bennett MR
    Philos Trans R Soc Lond B Biol Sci; 1995 Aug; 349(1328):197-214. PubMed ID: 8668726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Neurotransmitter release: a process of membrane fusion occurring in fractions of milliseconds].
    Alés E; Poyato JM; Valero V; Alvarez de Toledo G
    Rev Neurol; 1998 Jul; 27(155):111-7. PubMed ID: 9674042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium diffusion models and transmitter release in neurons.
    Zucker RS
    Fed Proc; 1985 Dec; 44(15):2950-2. PubMed ID: 2415403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RIM1 confers sustained activity and neurotransmitter vesicle anchoring to presynaptic Ca2+ channels.
    Kiyonaka S; Wakamori M; Miki T; Uriu Y; Nonaka M; Bito H; Beedle AM; Mori E; Hara Y; De Waard M; Kanagawa M; Itakura M; Takahashi M; Campbell KP; Mori Y
    Nat Neurosci; 2007 Jun; 10(6):691-701. PubMed ID: 17496890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The presynaptic CaV2.2 channel-transmitter release site core complex.
    Khanna R; Li Q; Bewersdorf J; Stanley EF
    Eur J Neurosci; 2007 Aug; 26(3):547-59. PubMed ID: 17686036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CAPS-1 and CAPS-2 are essential synaptic vesicle priming proteins.
    Jockusch WJ; Speidel D; Sigler A; Sørensen JB; Varoqueaux F; Rhee JS; Brose N
    Cell; 2007 Nov; 131(4):796-808. PubMed ID: 18022372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fusion pore regulation of transmitter release.
    Fernández-Peruchena C; Navas S; Montes MA; Alvarez de Toledo G
    Brain Res Brain Res Rev; 2005 Sep; 49(2):406-15. PubMed ID: 16111567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A unified model of presynaptic release site gating by calcium channel domains.
    Gentile L; Stanley EF
    Eur J Neurosci; 2005 Jan; 21(1):278-82. PubMed ID: 15654866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kv3 voltage-gated potassium channels regulate neurotransmitter release from mouse motor nerve terminals.
    Brooke RE; Moores TS; Morris NP; Parson SH; Deuchars J
    Eur J Neurosci; 2004 Dec; 20(12):3313-21. PubMed ID: 15610163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.