BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 10212479)

  • 1. Evanescent-wave microscopy: a new tool to gain insight into the control of transmitter release.
    Oheim M; Loerke D; Chow RH; Stühmer W
    Philos Trans R Soc Lond B Biol Sci; 1999 Feb; 354(1381):307-18. PubMed ID: 10212479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging of dynamic secretory vesicles in living pollen tubes of Picea meyeri using evanescent wave microscopy.
    Wang X; Teng Y; Wang Q; Li X; Sheng X; Zheng M; Samaj J; Baluska F; Lin J
    Plant Physiol; 2006 Aug; 141(4):1591-603. PubMed ID: 16798949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple stimulation-dependent processes regulate the size of the releasable pool of vesicles.
    Oheim M; Loerke D; Stühmer W; Chow RH
    Eur Biophys J; 1999; 28(2):91-101. PubMed ID: 10028234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water secretion associated with exocytosis in endocrine cells revealed by micro forcemetry and evanescent wave microscopy.
    Tsuboi T; Kikuta T; Sakurai T; Terakawa S
    Biophys J; 2002 Jul; 83(1):172-83. PubMed ID: 12080110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging transmitter release. II. A practical guide to evanescent-wave imaging.
    Oheim M
    Lasers Med Sci; 2001; 16(3):159-70. PubMed ID: 11482813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous evanescent wave imaging of insulin vesicle membrane and cargo during a single exocytotic event.
    Tsuboi T; Zhao C; Terakawa S; Rutter GA
    Curr Biol; 2000 Oct; 10(20):1307-10. PubMed ID: 11069115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exocytosis studies in a chromaffin cell-free system: imaging of single-vesicle exocytosis in a chromaffin cell-free system using total internal reflection fluorescence microscopy.
    Wiegand UK; Don-Wauchope A; Matskevich I; Duncan RR; Greaves J; Shipston MJ; Apps DK; Chow RH
    Ann N Y Acad Sci; 2002 Oct; 971():257-61. PubMed ID: 12438128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observing secretory granules with a multiangle evanescent wave microscope.
    Rohrbach A
    Biophys J; 2000 May; 78(5):2641-54. PubMed ID: 10777760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The last few milliseconds in the life of a secretory granule. Docking, dynamics and fusion visualized by total internal reflection fluorescence microscopy (TIRFM).
    Oheim M; Loerke D; Stühmer W; Chow RH
    Eur Biophys J; 1998; 27(2):83-98. PubMed ID: 9530824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tracking single secretory granules in live chromaffin cells by evanescent-field fluorescence microscopy.
    Steyer JA; Almers W
    Biophys J; 1999 Apr; 76(4):2262-71. PubMed ID: 10096921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport, docking and exocytosis of single secretory granules in live chromaffin cells.
    Steyer JA; Horstmann H; Almers W
    Nature; 1997 Jul; 388(6641):474-8. PubMed ID: 9242406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A confocal study on the visualization of chromaffin cell secretory vesicles with fluorescent targeted probes and acidic dyes.
    Moreno A; SantoDomingo J; Fonteriz RI; Lobatón CD; Montero M; Alvarez J
    J Struct Biol; 2010 Dec; 172(3):261-9. PubMed ID: 20600953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Super-resolution measurements with evanescent-wave fluorescence excitation using variable beam incidence.
    Loerke D; Preitz B; Stühmer W; Oheim M
    J Biomed Opt; 2000 Jan; 5(1):23-30. PubMed ID: 10938762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging transmitter release. I. Peeking at the steps preceding membrane fusion.
    Oheim M
    Lasers Med Sci; 2001; 16(3):149-58. PubMed ID: 11482812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying axial secretory-granule motion with variable-angle evanescent-field excitation.
    Loerke D; Stühmer W; Oheim M
    J Neurosci Methods; 2002 Sep; 119(1):65-73. PubMed ID: 12234637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical techniques for the study of exocytosis in isolated cells.
    Henry JP; Darchen F; Cribier S
    Biochimie; 1998; 80(5-6):371-7. PubMed ID: 9782378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of sequential exocytosis in a human neuroendocrine cell line using evanescent wave microscopy and "virtual trajectory" analysis.
    Tran VS; Huet S; Fanget I; Cribier S; Henry JP; Karatekin E
    Eur Biophys J; 2007 Dec; 37(1):55-69. PubMed ID: 17440716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rab3A negatively regulates activity-dependent modulation of exocytosis in bovine adrenal chromaffin cells.
    Thiagarajan R; Tewolde T; Li Y; Becker PL; Rich MM; Engisch KL
    J Physiol; 2004 Mar; 555(Pt 2):439-57. PubMed ID: 14694148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium regulates exocytosis at the level of single vesicles.
    Becherer U; Moser T; Stühmer W; Oheim M
    Nat Neurosci; 2003 Aug; 6(8):846-53. PubMed ID: 12845327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tracking chromaffin granules on their way through the actin cortex.
    Oheim M; Stühmer W
    Eur Biophys J; 2000; 29(2):67-89. PubMed ID: 10877017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.