These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1515 related articles for article (PubMed ID: 10212987)

  • 1. Protein backbone angle restraints from searching a database for chemical shift and sequence homology.
    Cornilescu G; Delaglio F; Bax A
    J Biomol NMR; 1999 Mar; 13(3):289-302. PubMed ID: 10212987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology.
    Shen Y; Bax A
    J Biomol NMR; 2007 Aug; 38(4):289-302. PubMed ID: 17610132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts.
    Shen Y; Delaglio F; Cornilescu G; Bax A
    J Biomol NMR; 2009 Aug; 44(4):213-23. PubMed ID: 19548092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein structural information derived from NMR chemical shift with the neural network program TALOS-N.
    Shen Y; Bax A
    Methods Mol Biol; 2015; 1260():17-32. PubMed ID: 25502373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate prediction of protein torsion angles using chemical shifts and sequence homology.
    Neal S; Berjanskii M; Zhang H; Wishart DS
    Magn Reson Chem; 2006 Jul; 44 Spec No():S158-67. PubMed ID: 16823900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid protein fold determination using secondary chemical shifts and cross-hydrogen bond 15N-13C' scalar couplings (3hbJNC').
    Bonvin AM; Houben K; Guenneugues M; Kaptein R; Boelens R
    J Biomol NMR; 2001 Nov; 21(3):221-33. PubMed ID: 11775739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SimShiftDB; local conformational restraints derived from chemical shift similarity searches on a large synthetic database.
    Ginzinger SW; Coles M
    J Biomol NMR; 2009 Mar; 43(3):179-85. PubMed ID: 19224375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. C alpha and C beta carbon-13 chemical shifts in proteins from an empirical database.
    Iwadate M; Asakura T; Williamson MP
    J Biomol NMR; 1999 Mar; 13(3):199-211. PubMed ID: 10212983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Bayesian-probability-based method for assigning protein backbone dihedral angles based on chemical shifts and local sequences.
    Wang J; Liu H
    J Biomol NMR; 2007 Jan; 37(1):31-41. PubMed ID: 17151953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated prediction of 15N, 13Calpha, 13Cbeta and 13C' chemical shifts in proteins using a density functional database.
    Xu XP; Case DA
    J Biomol NMR; 2001 Dec; 21(4):321-33. PubMed ID: 11824752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid and accurate calculation of protein 1H, 13C and 15N chemical shifts.
    Neal S; Nip AM; Zhang H; Wishart DS
    J Biomol NMR; 2003 Jul; 26(3):215-40. PubMed ID: 12766419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nearest-neighbor effects on backbone alpha and beta carbon chemical shifts in proteins.
    Wang L; Eghbalnia HR; Markley JL
    J Biomol NMR; 2007 Nov; 39(3):247-57. PubMed ID: 17899393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks.
    Shen Y; Bax A
    J Biomol NMR; 2013 Jul; 56(3):227-41. PubMed ID: 23728592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral fitting for signal assignment and structural analysis of uniformly 13C-labeled solid proteins by simulated annealing based on chemical shifts and spin dynamics.
    Matsuki Y; Akutsu H; Fujiwara T
    J Biomol NMR; 2007 Aug; 38(4):325-39. PubMed ID: 17612797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors affecting the use of 13C(alpha) chemical shifts to determine, refine, and validate protein structures.
    Vila JA; Scheraga HA
    Proteins; 2008 May; 71(2):641-54. PubMed ID: 17975838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMR solution structure of the non-RGD disintegrin obtustatin.
    Paz Moreno-Murciano M; Monleón D; Marcinkiewicz C; Calvete JJ; Celda B
    J Mol Biol; 2003 May; 329(1):135-45. PubMed ID: 12742023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assignment of protein backbone resonances using connectivity, torsion angles and 13Calpha chemical shifts.
    Morris LC; Valafar H; Prestegard JH
    J Biomol NMR; 2004 May; 29(1):1-9. PubMed ID: 15017135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determinations of 15N chemical shift anisotropy magnitudes in a uniformly 15N,13C-labeled microcrystalline protein by three-dimensional magic-angle spinning nuclear magnetic resonance spectroscopy.
    Wylie BJ; Franks WT; Rienstra CM
    J Phys Chem B; 2006 Jun; 110(22):10926-36. PubMed ID: 16771346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discrete backbone disorder in the nuclear magnetic resonance structure of apo intestinal fatty acid-binding protein: implications for the mechanism of ligand entry.
    Hodsdon ME; Cistola DP
    Biochemistry; 1997 Feb; 36(6):1450-60. PubMed ID: 9063893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMR solution structure of calcium-saturated skeletal muscle troponin C.
    Slupsky CM; Sykes BD
    Biochemistry; 1995 Dec; 34(49):15953-64. PubMed ID: 8519752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 76.