These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 10213392)
1. Correct targeting of dihydropyridine receptors and triadin in dyspedic mouse skeletal muscle in vivo. Takekura H; Franzini-Armstrong C Dev Dyn; 1999 Apr; 214(4):372-80. PubMed ID: 10213392 [TBL] [Abstract][Full Text] [Related]
2. Immunolocalization of triadin, DHP receptors, and ryanodine receptors in adult and developing skeletal muscle of rats. Carl SL; Felix K; Caswell AH; Brandt NR; Brunschwig JP; Meissner G; Ferguson DG Muscle Nerve; 1995 Nov; 18(11):1232-43. PubMed ID: 7565919 [TBL] [Abstract][Full Text] [Related]
3. Direct evidence for the existence and functional role of hyperreactive sulfhydryls on the ryanodine receptor-triadin complex selectively labeled by the coumarin maleimide 7-diethylamino-3-(4'-maleimidylphenyl)-4-methylcoumarin. Liu G; Abramson JJ; Zable AC; Pessah IN Mol Pharmacol; 1994 Feb; 45(2):189-200. PubMed ID: 8114670 [TBL] [Abstract][Full Text] [Related]
4. RYR1 and RYR3 have different roles in the assembly of calcium release units of skeletal muscle. Protasi F; Takekura H; Wang Y; Chen SR; Meissner G; Allen PD; Franzini-Armstrong C Biophys J; 2000 Nov; 79(5):2494-508. PubMed ID: 11053125 [TBL] [Abstract][Full Text] [Related]
5. Role of ryanodine receptors in the assembly of calcium release units in skeletal muscle. Protasi F; Franzini-Armstrong C; Allen PD J Cell Biol; 1998 Feb; 140(4):831-42. PubMed ID: 9472035 [TBL] [Abstract][Full Text] [Related]
6. Coordinated incorporation of skeletal muscle dihydropyridine receptors and ryanodine receptors in peripheral couplings of BC3H1 cells. Protasi F; Franzini-Armstrong C; Flucher BE J Cell Biol; 1997 May; 137(4):859-70. PubMed ID: 9151688 [TBL] [Abstract][Full Text] [Related]
7. Triadin binding to the C-terminal luminal loop of the ryanodine receptor is important for skeletal muscle excitation contraction coupling. Goonasekera SA; Beard NA; Groom L; Kimura T; Lyfenko AD; Rosenfeld A; Marty I; Dulhunty AF; Dirksen RT J Gen Physiol; 2007 Oct; 130(4):365-78. PubMed ID: 17846166 [TBL] [Abstract][Full Text] [Related]
8. Formation and maturation of the calcium release apparatus in developing and adult avian myocardium. Protasi F; Sun XH; Franzini-Armstrong C Dev Biol; 1996 Jan; 173(1):265-78. PubMed ID: 8575628 [TBL] [Abstract][Full Text] [Related]
9. Enhanced dihydropyridine receptor channel activity in the presence of ryanodine receptor. Nakai J; Dirksen RT; Nguyen HT; Pessah IN; Beam KG; Allen PD Nature; 1996 Mar; 380(6569):72-5. PubMed ID: 8598910 [TBL] [Abstract][Full Text] [Related]
10. Sequential docking, molecular differentiation, and positioning of T-Tubule/SR junctions in developing mouse skeletal muscle. Takekura H; Flucher BE; Franzini-Armstrong C Dev Biol; 2001 Nov; 239(2):204-14. PubMed ID: 11784029 [TBL] [Abstract][Full Text] [Related]
11. Abnormal junctions between surface membrane and sarcoplasmic reticulum in skeletal muscle with a mutation targeted to the ryanodine receptor. Takekura H; Nishi M; Noda T; Takeshima H; Franzini-Armstrong C Proc Natl Acad Sci U S A; 1995 Apr; 92(8):3381-5. PubMed ID: 7724570 [TBL] [Abstract][Full Text] [Related]
12. The assembly of calcium release units in cardiac muscle. Franzini-Armstrong C; Protasi F; Tijskens P Ann N Y Acad Sci; 2005 Jun; 1047():76-85. PubMed ID: 16093486 [TBL] [Abstract][Full Text] [Related]
13. Calsequestrin and the calcium release channel of skeletal and cardiac muscle. Beard NA; Laver DR; Dulhunty AF Prog Biophys Mol Biol; 2004 May; 85(1):33-69. PubMed ID: 15050380 [TBL] [Abstract][Full Text] [Related]
14. Molecular architecture of membranes involved in excitation-contraction coupling of cardiac muscle. Sun XH; Protasi F; Takahashi M; Takeshima H; Ferguson DG; Franzini-Armstrong C J Cell Biol; 1995 May; 129(3):659-71. PubMed ID: 7730402 [TBL] [Abstract][Full Text] [Related]
15. Divergence in the behaviour of the dihydropyridine receptor in muscle. Lüttgau HC J Physiol; 2000 Aug; 526 Pt 3():469. PubMed ID: 10921999 [TBL] [Abstract][Full Text] [Related]
16. Structural alterations in cardiac calcium release units resulting from overexpression of junctin. Zhang L; Franzini-Armstrong C; Ramesh V; Jones LR J Mol Cell Cardiol; 2001 Feb; 33(2):233-47. PubMed ID: 11162129 [TBL] [Abstract][Full Text] [Related]
17. Triad formation: organization and function of the sarcoplasmic reticulum calcium release channel and triadin in normal and dysgenic muscle in vitro. Flucher BE; Andrews SB; Fleischer S; Marks AR; Caswell A; Powell JA J Cell Biol; 1993 Dec; 123(5):1161-74. PubMed ID: 8245124 [TBL] [Abstract][Full Text] [Related]
18. Morphology and molecular composition of sarcoplasmic reticulum surface junctions in the absence of DHPR and RyR in mouse skeletal muscle. Felder E; Protasi F; Hirsch R; Franzini-Armstrong C; Allen PD Biophys J; 2002 Jun; 82(6):3144-9. PubMed ID: 12023238 [TBL] [Abstract][Full Text] [Related]
19. Dual regulation of the skeletal muscle ryanodine receptor by triadin and calsequestrin. Ohkura M; Furukawa K; Fujimori H; Kuruma A; Kawano S; Hiraoka M; Kuniyasu A; Nakayama H; Ohizumi Y Biochemistry; 1998 Sep; 37(37):12987-93. PubMed ID: 9737879 [TBL] [Abstract][Full Text] [Related]
20. Immunogold-labeled L-type calcium channels are clustered in the surface plasma membrane overlying junctional sarcoplasmic reticulum in guinea-pig myocytes-implications for excitation-contraction coupling in cardiac muscle. Gathercole DV; Colling DJ; Skepper JN; Takagishi Y; Levi AJ; Severs NJ J Mol Cell Cardiol; 2000 Nov; 32(11):1981-94. PubMed ID: 11040103 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]