BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 10213591)

  • 1. Internal dynamics of the nicotinic acetylcholine receptor in reconstituted membranes.
    Baenziger JE; Darsaut TE; Morris ML
    Biochemistry; 1999 Apr; 38(16):4905-11. PubMed ID: 10213591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Secondary structure of the exchange-resistant core from the nicotinic acetylcholine receptor probed directly by infrared spectroscopy and hydrogen/deuterium exchange.
    Méthot N; Baenziger JE
    Biochemistry; 1998 Oct; 37(42):14815-22. PubMed ID: 9778355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Desensitization of the nicotinic acetylcholine receptor mainly involves a structural change in solvent-accessible regions of the polypeptide backbone.
    Baenziger JE; Chew JP
    Biochemistry; 1997 Mar; 36(12):3617-24. PubMed ID: 9132013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of membrane lipid composition on the conformational equilibria of the nicotinic acetylcholine receptor.
    Baenziger JE; Morris ML; Darsaut TE; Ryan SE
    J Biol Chem; 2000 Jan; 275(2):777-84. PubMed ID: 10625607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid composition alters drug action at the nicotinic acetylcholine receptor.
    Baenziger JE; Ryan SE; Goodreid MM; Vuong NQ; Sturgeon RM; daCosta CJ
    Mol Pharmacol; 2008 Mar; 73(3):880-90. PubMed ID: 18055762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of both the ligand- and lipid-dependent channel-inactive states of the nicotinic acetylcholine receptor probed by FTIR spectroscopy and hydrogen exchange.
    Méthot N; Demers CN; Baenziger JE
    Biochemistry; 1995 Nov; 34(46):15142-9. PubMed ID: 7578128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The alphaM1 transmembrane segment of the nicotinic acetylcholine receptor interacts strongly with model membranes.
    De Planque MR; Rijkers DT; Liskamp RM; Separovic F
    Magn Reson Chem; 2004 Feb; 42(2):148-54. PubMed ID: 14745794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Downscaling Fourier transform infrared spectroscopy to the micrometer and nanogram scale: secondary structure of serotonin and acetylcholine receptors.
    Rigler P; Ulrich WP; Hovius R; Ilegems E; Pick H; Vogel H
    Biochemistry; 2003 Dec; 42(47):14017-22. PubMed ID: 14636070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fourier transform infrared and hydrogen/deuterium exchange reveal an exchange-resistant core of alpha-helical peptide hydrogens in the nicotinic acetylcholine receptor.
    Baenziger JE; Méthot N
    J Biol Chem; 1995 Dec; 270(49):29129-37. PubMed ID: 7493938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model for short alpha-neurotoxin bound to nicotinic acetylcholine receptor from Torpedo californica: comparison with long-chain alpha-neurotoxins and alpha-conotoxins.
    Mordvintsev DY; Polyak YL; Levtsova OV; Tourleigh YV; Kasheverov IE; Shaitan KV; Utkin YN; Tsetlin VI
    Comput Biol Chem; 2005 Dec; 29(6):398-411. PubMed ID: 16290328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural effects of neutral and anionic lipids on the nicotinic acetylcholine receptor. An infrared difference spectroscopy study.
    Ryan SE; Demers CN; Chew JP; Baenziger JE
    J Biol Chem; 1996 Oct; 271(40):24590-7. PubMed ID: 8798723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of glycosylation and membrane environment in nicotinic acetylcholine receptor stability.
    daCosta CJ; Kaiser DE; Baenziger JE
    Biophys J; 2005 Mar; 88(3):1755-64. PubMed ID: 15626708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the lipid requirements of the Torpedo californica nicotinic acetylcholine receptor.
    Hamouda AK; Sanghvi M; Sauls D; Machu TK; Blanton MP
    Biochemistry; 2006 Apr; 45(13):4327-37. PubMed ID: 16566607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphatidic acid and phosphatidylserine have distinct structural and functional interactions with the nicotinic acetylcholine receptor.
    daCosta CJ; Wagg ID; McKay ME; Baenziger JE
    J Biol Chem; 2004 Apr; 279(15):14967-74. PubMed ID: 14752108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and functional changes induced in the nicotinic acetylcholine receptor by membrane phospholipids.
    Fernández-Carvajal AM; Encinar JA; Poveda JA; de Juan E; Martínez-Pinna J; Ivorra I; Ferragut JA; Morales A; González-Ros JM
    J Mol Neurosci; 2006; 30(1-2):121-4. PubMed ID: 17192656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence and molecular dynamics studies of the acetylcholine receptor gammaM4 transmembrane peptide in reconstituted systems.
    Antollini SS; Xu Y; Jiang H; Barrantes FJ
    Mol Membr Biol; 2005; 22(6):471-83. PubMed ID: 16373319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A role for cholesterol as a structural effector of the nicotinic acetylcholine receptor.
    Fernandez-Ballester G; Castresana J; Fernandez AM; Arrondo JL; Ferragut JA; Gonzalez-Ros JM
    Biochemistry; 1994 Apr; 33(13):4065-71. PubMed ID: 8142409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cholesterol dynamics in membranes of raft composition: a molecular point of view from 2H and 31P solid-state NMR.
    Aussenac F; Tavares M; Dufourc EJ
    Biochemistry; 2003 Feb; 42(6):1383-90. PubMed ID: 12578350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipids, proteins, and their interplay in the dynamics of temperature-stressed membranes of a cyanobacterium, Synechocystis PCC 6803.
    Laczkó-Dobos H; Szalontai B
    Biochemistry; 2009 Oct; 48(42):10120-8. PubMed ID: 19788309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing conformational changes in the nicotinic acetylcholine receptor by Fourier transform infrared difference spectroscopy.
    Baenziger JE; Miller KW; McCarthy MP; Rothschild KJ
    Biophys J; 1992 Apr; 62(1):64-6. PubMed ID: 1600101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.