BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 10213623)

  • 21. Molecular approaches to inhibit HIV-1 tat expression and functions.
    Grossi MP; Caputo A; Zucchini S; Bozzini R; Marconi PC; Manservigi R; Barbanti-Brodano G; Balboni PG
    Year Immunol; 1993; 7():199-204. PubMed ID: 8396820
    [No Abstract]   [Full Text] [Related]  

  • 22. Mutagenesis of EIAV TAT reveals structural features essential for transcriptional activation and TAR element recognition.
    Derse D; Newbold SH
    Virology; 1993 Jun; 194(2):530-6. PubMed ID: 8389074
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Binding of neomycin to the TAR element of HIV-1 RNA induces dissociation of Tat protein by an allosteric mechanism.
    Wang S; Huber PW; Cui M; Czarnik AW; Mei HY
    Biochemistry; 1998 Apr; 37(16):5549-57. PubMed ID: 9548939
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Use of a polyethylene glycol-peptide conjugate in a competition gel shift assay for screening potential antagonists of HIV-1 Tat protein binding to TAR RNA.
    Wang J; Huang SY; Choudhury I; Leibowitz MJ; Stein S
    Anal Biochem; 1995 Dec; 232(2):238-42. PubMed ID: 8747481
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The HIV-1 Tat transactivator protein: a therapeutic target?
    Fulcher AJ; Jans DA
    IUBMB Life; 2003 Dec; 55(12):669-80. PubMed ID: 14769003
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of the small leader exons 2 and 3 on human immunodeficiency virus type 1 gene expression.
    Krummheuer J; Lenz C; Kammler S; Scheid A; Schaal H
    Virology; 2001 Aug; 286(2):276-89. PubMed ID: 11485396
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of the solution conformations of unbound and Tat peptide-bound forms of HIV-1 TAR RNA.
    Long KS; Crothers DM
    Biochemistry; 1999 Aug; 38(31):10059-69. PubMed ID: 10433713
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cyclin T1 domains involved in complex formation with Tat and TAR RNA are critical for tat-activation.
    Ivanov D; Kwak YT; Nee E; Guo J; García-Martínez LF; Gaynor RB
    J Mol Biol; 1999 Apr; 288(1):41-56. PubMed ID: 10329125
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of generation 2-5 of PAMAM dendrimer on the inhibition of Tat peptide/ TAR RNA binding in HIV-1 transcription.
    Wang W; Guo Z; Chen Y; Liu T; Jiang L
    Chem Biol Drug Des; 2006 Dec; 68(6):314-8. PubMed ID: 17177893
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new class of HIV-1 Tat antagonist acting through Tat-TAR inhibition.
    Hamy F; Brondani V; Flörsheimer A; Stark W; Blommers MJ; Klimkait T
    Biochemistry; 1998 Apr; 37(15):5086-95. PubMed ID: 9548739
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure-based drug design targeting an inactive RNA conformation: exploiting the flexibility of HIV-1 TAR RNA.
    Murchie AI; Davis B; Isel C; Afshar M; Drysdale MJ; Bower J; Potter AJ; Starkey ID; Swarbrick TM; Mirza S; Prescott CD; Vaglio P; Aboul-ela F; Karn J
    J Mol Biol; 2004 Feb; 336(3):625-38. PubMed ID: 15095977
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of the HIV-1 LTR NF-kappaB-proximal Sp site III: evidence for cell type-specific gene regulation and viral replication.
    McAllister JJ; Phillips D; Millhouse S; Conner J; Hogan T; Ross HL; Wigdahl B
    Virology; 2000 Sep; 274(2):262-77. PubMed ID: 10964770
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anti-termination by SIV Tat requires flexibility of the nascent TAR structure.
    Sommer P; Vartanian JP; Wachsmuth M; Henry M; Guetard D; Wain-Hobson S
    J Mol Biol; 2004 Nov; 344(1):11-28. PubMed ID: 15504399
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure-based design of a dimeric RNA-peptide complex.
    Campisi DM; Calabro V; Frankel AD
    EMBO J; 2001 Jan; 20(1-2):178-86. PubMed ID: 11226168
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dissection of the proposed base triple in human immunodeficiency virus TAR RNA indicates the importance of the Hoogsteen interaction.
    Tao J; Chen L; Frankel AD
    Biochemistry; 1997 Mar; 36(12):3491-5. PubMed ID: 9131998
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro selection of RNA aptamers that can bind specifically to Tat protein of HIV-1.
    Yamamoto R; Toyoda S; Viljanen P; Machida K; Nishikawa S; Murakami K; Taira K; Kumar PK
    Nucleic Acids Symp Ser; 1995; (34):145-6. PubMed ID: 8841594
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemical cross-linking of the human immunodeficiency virus type 1 Tat protein to synthetic models of the RNA recognition sequence TAR containing site-specific trisubstituted pyrophosphate analogues.
    Naryshkin NA; Farrow MA; Ivanovskaya MG; Oretskaya TS; Shabarova ZA; Gait MJ
    Biochemistry; 1997 Mar; 36(12):3496-505. PubMed ID: 9131999
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aqueous solution structure of a hybrid lentiviral Tat peptide and a model of its interaction with HIV-1 TAR RNA.
    Mujeeb A; Parslow TG; Yuan YC; James TL
    J Biomol Struct Dyn; 1996 Feb; 13(4):649-60. PubMed ID: 8906885
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A bulge structure in HIV-1 TAR RNA is required for Tat binding and Tat-mediated trans-activation.
    Dis Markers; 1991; 9(1):56-7. PubMed ID: 1720714
    [No Abstract]   [Full Text] [Related]  

  • 40. Tricyclo-DNA containing oligonucleotides as steric block inhibitors of human immunodeficiency virus type 1 tat-dependent trans-activation and HIV-1 infectivity.
    Ivanova G; Reigadas S; Ittig D; Arzumanov A; Andreola ML; Leumann C; Toulmé JJ; Gait MJ
    Oligonucleotides; 2007; 17(1):54-65. PubMed ID: 17461763
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.