BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 10214959)

  • 1. Thioredoxin peroxidase in the Cyanobacterium Synechocystis sp. PCC 6803.
    Yamamoto H; Miyake C; Dietz KJ; Tomizawa K; Murata N; Yokota A
    FEBS Lett; 1999 Mar; 447(2-3):269-73. PubMed ID: 10214959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo role of catalase-peroxidase in synechocystis sp. strain PCC 6803.
    Tichy M; Vermaas W
    J Bacteriol; 1999 Mar; 181(6):1875-82. PubMed ID: 10074082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of the ggpS gene, involved in osmolyte synthesis in the marine cyanobacterium Synechococcus sp. Strain PCC 7002, revealed regulatory differences between this strain and the freshwater strain Synechocystis sp. Strain PCC 6803.
    Engelbrecht F; Marin K; Hagemann M
    Appl Environ Microbiol; 1999 Nov; 65(11):4822-9. PubMed ID: 10543792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The plastidic 2-cysteine peroxiredoxin is a target for a thioredoxin involved in the protection of the photosynthetic apparatus against oxidative damage.
    Broin M; Cuiné S; Eymery F; Rey P
    Plant Cell; 2002 Jun; 14(6):1417-32. PubMed ID: 12084836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cyanobacterium Synechocystis sp. strain PCC 6803 expresses a DNA methyltransferase specific for the recognition sequence of the restriction endonuclease PvuI.
    Scharnagl M; Richter S; Hagemann M
    J Bacteriol; 1998 Aug; 180(16):4116-22. PubMed ID: 9696758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modification of photosynthetic electron transport and amino acid levels by overexpression of a circadian-related histidine kinase hik8 in Synechocystis sp. PCC 6803.
    Kuwahara A; Arisaka S; Takeya M; Iijima H; Hirai MY; Osanai T
    Front Microbiol; 2015; 6():1150. PubMed ID: 26539179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An experimentally anchored map of transcriptional start sites in the model cyanobacterium Synechocystis sp. PCC6803.
    Mitschke J; Georg J; Scholz I; Sharma CM; Dienst D; Bantscheff J; Voss B; Steglich C; Wilde A; Vogel J; Hess WR
    Proc Natl Acad Sci U S A; 2011 Feb; 108(5):2124-9. PubMed ID: 21245330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of translation by the redox state of elongation factor G in the cyanobacterium Synechocystis sp. PCC 6803.
    Kojima K; Motohashi K; Morota T; Oshita M; Hisabori T; Hayashi H; Nishiyama Y
    J Biol Chem; 2009 Jul; 284(28):18685-91. PubMed ID: 19447882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a glucokinase that generates a major glucose phosphorylation activity in the cyanobacterium Synechocystis sp. PCC 6803.
    Lee JM; Ryu JY; Kim HH; Choi SB; de Marsac NT; Park YI
    Mol Cells; 2005 Apr; 19(2):256-61. PubMed ID: 15879711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional and structural characterization of a cation-dependent O-methyltransferase from the cyanobacterium Synechocystis sp. strain PCC 6803.
    Kopycki JG; Stubbs MT; Brandt W; Hagemann M; Porzel A; Schmidt J; Schliemann W; Zenk MH; Vogt T
    J Biol Chem; 2008 Jul; 283(30):20888-96. PubMed ID: 18502765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering desiccation tolerance in Escherichia coli.
    Billi D; Wright DJ; Helm RF; Prickett T; Potts M; Crowe JH
    Appl Environ Microbiol; 2000 Apr; 66(4):1680-4. PubMed ID: 10742260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superoxide dismutase activity in the cyanobacterium Microcystis aeruginosa after surface bloom formation.
    Canini A; Leonardi D; Caiola MG
    New Phytol; 2001 Oct; 152(1):107-116. PubMed ID: 35974488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Progress in the Study of Peroxiredoxin in the Harmful Algal Bloom Species
    Shimasaki Y; Mukai K; Takai Y; Qiu X; Oshima Y
    Antioxidants (Basel); 2021 Jan; 10(2):. PubMed ID: 33499182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High Light Induced Alka(e)ne Biodegradation for Lipid and Redox Homeostasis in Cyanobacteria.
    Qiao Y; Wang W; Lu X
    Front Microbiol; 2020; 11():1659. PubMed ID: 32765469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Universal Molecular Triggers of Stress Responses in Cyanobacterium
    Mironov KS; Sinetova MA; Shumskaya M; Los DA
    Life (Basel); 2019 Aug; 9(3):. PubMed ID: 31434306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elevated carbon dioxide levels lead to proteome-wide alterations for optimal growth of a fast-growing cyanobacterium, Synechococcus elongatus PCC 11801.
    Mehta K; Jaiswal D; Nayak M; Prasannan CB; Wangikar PP; Srivastava S
    Sci Rep; 2019 Apr; 9(1):6257. PubMed ID: 31000743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of
    Kim YS; Kim JJ; Park SI; Diamond S; Boyd JS; Taton A; Kim IS; Golden JW; Yoon HS
    Front Plant Sci; 2018; 9():1848. PubMed ID: 30619416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction-Induced Suppression of Electron Flow (RISE) Is Relieved by Non-ATP-Consuming Electron Flow in
    Shimakawa G; Shaku K; Miyake C
    Front Microbiol; 2018; 9():886. PubMed ID: 29867800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time iTRAQ-based proteome profiling revealed the central metabolism involved in nitrogen starvation induced lipid accumulation in microalgae.
    Rai V; Muthuraj M; Gandhi MN; Das D; Srivastava S
    Sci Rep; 2017 Apr; 7():45732. PubMed ID: 28378827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NADPH-Thioredoxin Reductase C Mediates the Response to Oxidative Stress and Thermotolerance in the Cyanobacterium Anabaena sp. PCC7120.
    Sánchez-Riego AM; Mata-Cabana A; Galmozzi CV; Florencio FJ
    Front Microbiol; 2016; 7():1283. PubMed ID: 27588019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.