These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 10215152)

  • 1. Neurotoxic N-methyl-D-aspartate lesion of the ventral midbrain and mesopontine junction alters sleep-wake organization.
    Lai YY; Shalita T; Hajnik T; Wu JP; Kuo JS; Chia LG; Siegel JM
    Neuroscience; 1999 May; 90(2):469-83. PubMed ID: 10215152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Counterpointing the functional role of the forebrain and of the brainstem in the control of the sleep-waking system.
    Villablanca JR
    J Sleep Res; 2004 Sep; 13(3):179-208. PubMed ID: 15339255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sleep-waking states develop independently in the isolated forebrain and brain stem following early postnatal midbrain transection in cats.
    Villablanca JR; de Andrés I; Olmstead CE
    Neuroscience; 2001; 106(4):717-31. PubMed ID: 11682158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sleep and Wakefulness Are Controlled by Ventral Medial Midbrain/Pons GABAergic Neurons in Mice.
    Takata Y; Oishi Y; Zhou XZ; Hasegawa E; Takahashi K; Cherasse Y; Sakurai T; Lazarus M
    J Neurosci; 2018 Nov; 38(47):10080-10092. PubMed ID: 30282729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurotoxic lesions at the ventral mesopontine junction change sleep time and muscle activity during sleep: an animal model of motor disorders in sleep.
    Lai YY; Hsieh KC; Nguyen D; Peever J; Siegel JM
    Neuroscience; 2008 Jun; 154(2):431-43. PubMed ID: 18487021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Selective stimulations and lesions of the rat brain nuclei as the models for research of the human sleep pathology mechanisms].
    Šaponjić J
    Glas Srp Akad Nauka Med; 2011; (51):85-97. PubMed ID: 22165729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A restricted parabrachial pontine region is active during non-rapid eye movement sleep.
    Torterolo P; Sampogna S; Chase MH
    Neuroscience; 2011 Sep; 190():184-93. PubMed ID: 21704676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholinergic and non-cholinergic afferents of the caudolateral parabrachial nucleus: a role in the long-term enhancement of rapid eye movement sleep.
    Quattrochi J; Datta S; Hobson JA
    Neuroscience; 1998 Apr; 83(4):1123-36. PubMed ID: 9502251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurotoxic lesions of phasic pontine-wave generator cells impair retention of 2-way active avoidance memory.
    Mavanji V; Ulloor J; Saha S; Datta S
    Sleep; 2004 Nov; 27(7):1282-92. PubMed ID: 15586781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of neuron spike activity in the oral nucleus of the pons during the sleep-waking cycle in cats.
    Dergacheva OY; Khachikova IE; Burikov AA
    Neurosci Behav Physiol; 2004 Jun; 34(5):485-9. PubMed ID: 15330287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous pontine and basal forebrain microinjections of carbachol suppress REM sleep.
    Baghdoyan HA; Spotts JL; Snyder SG
    J Neurosci; 1993 Jan; 13(1):229-42. PubMed ID: 8423470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Neurochemical mechanisms of sleep regulation].
    Glas Srp Akad Nauka Med; 2009; (50):97-109. PubMed ID: 20666118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurotoxic lesions of the dorsolateral pontomesencephalic tegmentum-cholinergic cell area in the cat. II. Effects upon sleep-waking states.
    Webster HH; Jones BE
    Brain Res; 1988 Aug; 458(2):285-302. PubMed ID: 2905197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term enhancement of REM sleep following cholinergic stimulation.
    Datta S; Calvo JM; Quattrochi JJ; Hobson JA
    Neuroreport; 1991 Oct; 2(10):619-22. PubMed ID: 1756243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-specific enhancement and suppression of desynchronized sleep signs following cholinergic stimulation of three brainstem regions.
    Baghdoyan HA; Rodrigo-Angulo ML; McCarley RW; Hobson JA
    Brain Res; 1984 Jul; 306(1-2):39-52. PubMed ID: 6466986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of hypnogenic brain areas on wakefulness- and rapid-eye-movement sleep-related neurons in the brainstem of freely moving cats.
    Mallick BN; Thankachan S; Islam F
    J Neurosci Res; 2004 Jan; 75(1):133-42. PubMed ID: 14689456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wake-promoting and sleep-suppressing actions of hypocretin (orexin): basal forebrain sites of action.
    España RA; Baldo BA; Kelley AE; Berridge CW
    Neuroscience; 2001; 106(4):699-715. PubMed ID: 11682157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of adenosine in behavioral state modulation: a microdialysis study in the freely moving cat.
    Portas CM; Thakkar M; Rainnie DG; Greene RW; McCarley RW
    Neuroscience; 1997 Jul; 79(1):225-35. PubMed ID: 9178878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The rostromedial tegmental nucleus is essential for non-rapid eye movement sleep.
    Yang SR; Hu ZZ; Luo YJ; Zhao YN; Sun HX; Yin D; Wang CY; Yan YD; Wang DR; Yuan XS; Ye CB; Guo W; Qu WM; Cherasse Y; Lazarus M; Ding YQ; Huang ZL
    PLoS Biol; 2018 Apr; 16(4):e2002909. PubMed ID: 29652889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Impulse activity of neurons in the nucleus pontis oralis in cats during sleep--wakefulness cycle].
    Dergacheva OIu; Khachikova IE; Burikov AA
    Ross Fiziol Zh Im I M Sechenova; 2002 Dec; 88(12):1530-7. PubMed ID: 12852211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.