These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

478 related articles for article (PubMed ID: 10215604)

  • 1. Identification of the amine-polyamine-choline transporter superfamily 'consensus amphipathic region' as the target for inactivation of the Escherichia coli GABA transporter GabP by thiol modification reagents. Role of Cys-300 in restoring thiol sensitivity to Gabp lacking Cys.
    Hu LA; King SC
    Biochem J; 1999 May; 339 ( Pt 3)(Pt 3):649-55. PubMed ID: 10215604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional significance of the "signature cysteine" in helix 8 of the Escherichia coli 4-aminobutyrate transporter from the amine-polyamine-choline superfamily. Restoration of Cys-300 to the Cys-less Gabp.
    Hu LA; King SC
    J Biol Chem; 1998 Aug; 273(32):20162-7. PubMed ID: 9685361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of the transport specificity ratio and cysteine-scanning mutagenesis to detect multiple substrate specificity determinants in the consensus amphipathic region of the Escherichia coli GABA (gamma-aminobutyric acid) transporter encoded by gabP.
    King SC; Brown-Istvan L
    Biochem J; 2003 Dec; 376(Pt 3):633-44. PubMed ID: 12956624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane topology of the Escherichia coli gamma-aminobutyrate transporter: implications on the topography and mechanism of prokaryotic and eukaryotic transporters from the APC superfamily.
    Hu LA; King SC
    Biochem J; 1998 Nov; 336 ( Pt 1)(Pt 1):69-76. PubMed ID: 9806886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of substrate specificity shifts by placement of alanine insertions within the consensus amphipathic region of the Escherichia coli GABA (gamma-aminobutyric acid) transporter encoded by gabP.
    King SC; Hu LA; Pugh A
    Biochem J; 2003 Dec; 376(Pt 3):645-53. PubMed ID: 12956623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 4-Aminobutyrate (GABA) transporters from the amine-polyamine-choline superfamily: substrate specificity and ligand recognition profile of the 4-aminobutyrate permease from Bacillus subtilis.
    Brechtel CE; King SC
    Biochem J; 1998 Aug; 333 ( Pt 3)(Pt 3):565-71. PubMed ID: 9677314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional sensitivity of polar surfaces on transmembrane helix 8 and cytoplasmic loop 8-9 of the Escherichia coli GABA (4-aminobutyrate) transporter encoded by gabP: mutagenic analysis of a consensus amphipathic region found in transporters from bacteria to mammals.
    Hu LA; King SC
    Biochem J; 1998 Mar; 330 ( Pt 2)(Pt 2):771-6. PubMed ID: 9480889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-directed sulfhydryl labeling of the lactose permease of Escherichia coli: helix X.
    Venkatesan P; Hu Y; Kaback HR
    Biochemistry; 2000 Sep; 39(35):10656-61. PubMed ID: 10978149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-directed sulfhydryl labeling of the lactose permease of Escherichia coli: N-ethylmaleimide-sensitive face of helix II.
    Venkatesan P; Liu Z; Hu Y; Kaback HR
    Biochemistry; 2000 Sep; 39(35):10649-55. PubMed ID: 10978148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional characterization of cysteine residues in GlpT, the glycerol 3-phosphate transporter of Escherichia coli.
    Fann MC; Busch A; Maloney PC
    J Bacteriol; 2003 Jul; 185(13):3863-70. PubMed ID: 12813080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ligand recognition properties of the Escherichia coli 4-aminobutyrate transporter encoded by gabP. Specificity of Gab permease for heterocyclic inhibitors.
    King SC; Fleming SR; Brechtel CE
    J Biol Chem; 1995 Aug; 270(34):19893-7. PubMed ID: 7650003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cysteine-scanning mutagenesis of helix VI and the flanking hydrophilic domains on the lactose permease of Escherichia coli.
    Frillingos S; Kaback HR
    Biochemistry; 1996 Apr; 35(16):5333-8. PubMed ID: 8611521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-directed sulfhydryl labeling of the lactose permease of Escherichia coli: helix VII.
    Venkatesan P; Kwaw I; Hu Y; Kaback HR
    Biochemistry; 2000 Sep; 39(35):10641-8. PubMed ID: 10978147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phospholipids as determinants of membrane protein topology. Phosphatidylethanolamine is required for the proper topological organization of the gamma-aminobutyric acid permease (GabP) of Escherichia coli.
    Zhang W; Campbell HA; King SC; Dowhan W
    J Biol Chem; 2005 Jul; 280(28):26032-8. PubMed ID: 15890647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of helix VIII in the lactose permease of Escherichia coli: I. Cys-scanning mutagenesis.
    Frillingos S; Ujwal ML; Sun J; Kaback HR
    Protein Sci; 1997 Feb; 6(2):431-7. PubMed ID: 9041646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyridine carboxylic acids as inhibitors and substrates of the Escherichia coli gab permease encoded by gabP.
    King SC; Fleming SR; Brechtel C
    J Bacteriol; 1995 Sep; 177(18):5381-2. PubMed ID: 7665533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cysteine-scanning mutagenesis of helix II and flanking hydrophilic domains in the lactose permease of Escherichia coli.
    Frillingos S; Sun J; Gonzalez A; Kaback HR
    Biochemistry; 1997 Jan; 36(1):269-73. PubMed ID: 8993343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cysteine-scanning mutagenesis of helix IV and the adjoining loops in the lactose permease of Escherichia coli: Glu126 and Arg144 are essential. off.
    Frillingos S; Gonzalez A; Kaback HR
    Biochemistry; 1997 Nov; 36(47):14284-90. PubMed ID: 9400367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An investigation of cysteine mutants on the cytoplasmic loop X/XI in the melibiose transporter of Escherichia coli by using thiol reagents: implication of structural conservation of charged residues.
    Ding PZ
    Biochem Biophys Res Commun; 2003 Aug; 307(4):864-9. PubMed ID: 12878191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cysteine scanning mutagenesis of helices 2 and 7 in GLUT1 identifies an exofacial cleft in both transmembrane segments.
    Olsowski A; Monden I; Krause G; Keller K
    Biochemistry; 2000 Mar; 39(10):2469-74. PubMed ID: 10704196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.