These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 10215883)

  • 61. Stabilisation of methylene radicals by cob(II)alamin in coenzyme B12 dependent mutases.
    Buckel W; Kratky C; Golding BT
    Chemistry; 2005 Dec; 12(2):352-62. PubMed ID: 16304645
    [TBL] [Abstract][Full Text] [Related]  

  • 62. On the role of two different cobalt(II) species in coenzyme B12-dependent 2-methyleneglutarate mutase from Clostridium barkeri.
    Zelder O; Buckel W
    Biol Chem Hoppe Seyler; 1993 Jan; 374(1):85-90. PubMed ID: 8382495
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Adenosylcobalamin and cob(II)alamin as prosthetic groups of 2-methyleneglutarate mutase from Clostridium barkeri.
    Michel C; Albracht SP; Buckel W
    Eur J Biochem; 1992 Apr; 205(2):767-73. PubMed ID: 1315277
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Physiology and posttranscriptional regulation of methanol:coenzyme M methyltransferase isozymes in Methanosarcina acetivorans C2A.
    Opulencia RB; Bose A; Metcalf WW
    J Bacteriol; 2009 Nov; 191(22):6928-35. PubMed ID: 19767431
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Nitrous oxide inactivation of cobalamin-dependent methionine synthase from Escherichia coli: characterization of the damage to the enzyme and prosthetic group.
    Drummond JT; Matthews RG
    Biochemistry; 1994 Mar; 33(12):3742-50. PubMed ID: 8142374
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Residue Phe112 of the human-type corrinoid adenosyltransferase (PduO) enzyme of Lactobacillus reuteri is critical to the formation of the four-coordinate Co(II) corrinoid substrate and to the activity of the enzyme.
    Mera PE; St Maurice M; Rayment I; Escalante-Semerena JC
    Biochemistry; 2009 Apr; 48(14):3138-45. PubMed ID: 19236001
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Substrate and cofactor reactivity of a carbon monoxide dehydrogenase-corrinoid enzyme complex: stepwise reduction of iron-sulfur and corrinoid centers, the corrinoid Co2+/1+ redox midpoint potential, and overall synthesis of acetyl-CoA.
    Grahame DA
    Biochemistry; 1993 Oct; 32(40):10786-93. PubMed ID: 8399227
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Veratrol-O-demethylase of Acetobacterium dehalogenans: ATP-dependent reduction of the corrinoid protein.
    Siebert A; Schubert T; Engelmann T; Studenik S; Diekert G
    Arch Microbiol; 2005 Sep; 183(6):378-84. PubMed ID: 15968525
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The trimethylamine methyltransferase gene and multiple dimethylamine methyltransferase genes of Methanosarcina barkeri contain in-frame and read-through amber codons.
    Paul L; Ferguson DJ; Krzycki JA
    J Bacteriol; 2000 May; 182(9):2520-9. PubMed ID: 10762254
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Mobile loop dynamics in adenosyltransferase control binding and reactivity of coenzyme B
    Mascarenhas R; Ruetz M; McDevitt L; Koutmos M; Banerjee R
    Proc Natl Acad Sci U S A; 2020 Dec; 117(48):30412-30422. PubMed ID: 33199623
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Participation of cob(I) alamin in the reaction catalyzed by methionine synthase from Escherichia coli: a steady-state and rapid reaction kinetic analysis.
    Banerjee RV; Frasca V; Ballou DP; Matthews RG
    Biochemistry; 1990 Dec; 29(50):11101-9. PubMed ID: 2271698
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Connection between multimetal(loid) methylation in methanoarchaea and central intermediates of methanogenesis.
    Thomas F; Diaz-Bone RA; Wuerfel O; Huber B; Weidenbach K; Schmitz RA; Hensel R
    Appl Environ Microbiol; 2011 Dec; 77(24):8669-75. PubMed ID: 22003009
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Cobalamin-dependent and cobamide-dependent methyltransferases.
    Matthews RG; Koutmos M; Datta S
    Curr Opin Struct Biol; 2008 Dec; 18(6):658-66. PubMed ID: 19059104
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Assay of methylotrophic methyltransferases from methanogenic archaea.
    Ferguson DJ; Longstaff DG; Krzycki JA
    Methods Enzymol; 2011; 494():139-58. PubMed ID: 21402214
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Biochemical evidence that the pduS gene encodes a bifunctional cobalamin reductase.
    Sampson EM; Johnson CLV; Bobik TA
    Microbiology (Reading); 2005 Apr; 151(Pt 4):1169-1177. PubMed ID: 15817784
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Cobalamin-dependent methionine synthase is a modular protein with distinct regions for binding homocysteine, methyltetrahydrofolate, cobalamin, and adenosylmethionine.
    Goulding CW; Postigo D; Matthews RG
    Biochemistry; 1997 Jul; 36(26):8082-91. PubMed ID: 9201956
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Quantitation of rate enhancements attained by the binding of cobalamin to methionine synthase.
    Bandarian V; Matthews RG
    Biochemistry; 2001 Apr; 40(16):5056-64. PubMed ID: 11305922
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Coordination Chemistry Controls Coenzyme B
    Gouda H; Li Z; Ruetz M; Banerjee R
    Inorg Chem; 2023 Aug; 62(32):12630-12633. PubMed ID: 37526260
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Involvement of the "A" isozyme of methyltransferase II and the 29-kilodalton corrinoid protein in methanogenesis from monomethylamine.
    Burke SA; Krzycki JA
    J Bacteriol; 1995 Aug; 177(15):4410-6. PubMed ID: 7635826
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Identification and characterization of two enzymes involved in the intracellular metabolism of cobalamin. Cyanocobalamin beta-ligand transferase and microsomal cob(III)alamin reductase.
    Pezacka EH
    Biochim Biophys Acta; 1993 Jun; 1157(2):167-77. PubMed ID: 8507652
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.