These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 10215883)

  • 81. 5'-Peroxyadenosine and 5'-peroxyadenosylcobalamin as intermediates in the aerobic photolysis of adenosylcobalamin.
    Schwartz PA; Frey PA
    Biochemistry; 2007 Jun; 46(24):7284-92. PubMed ID: 17503776
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Unprecedented Mechanism Employed by the Salmonella enterica EutT ATP:Co(I)rrinoid Adenosyltransferase Precludes Adenosylation of Incomplete Co(II)rrinoids.
    Park K; Mera PE; Moore TC; Escalante-Semerena JC; Brunold TC
    Angew Chem Int Ed Engl; 2015 Jun; 54(24):7158-61. PubMed ID: 25914129
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Corrinoid-Dependent Methyl Transfer Reactions Are Involved in Methanol and 3,4-Dimethoxybenzoate Metabolism by Sporomusa ovata.
    Stupperich E; Konle R
    Appl Environ Microbiol; 1993 Sep; 59(9):3110-6. PubMed ID: 16349050
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Multiple roles of ATP:cob(I)alamin adenosyltransferases in the conversion of B12 to coenzyme B12.
    Mera PE; Escalante-Semerena JC
    Appl Microbiol Biotechnol; 2010 Sep; 88(1):41-8. PubMed ID: 20677021
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Experimental study of hydrogen bonding potentially stabilizing the 5'-deoxyadenosyl radical from coenzyme B12.
    Friedrich P; Baisch U; Harrington RW; Lyatuu F; Zhou K; Zelder F; McFarlane W; Buckel W; Golding BT
    Chemistry; 2012 Dec; 18(50):16114-22. PubMed ID: 23080006
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Electron transfer in the substrate-dependent suicide inactivation of lysine 5,6-aminomutase.
    Tang KH; Chang CH; Frey PA
    Biochemistry; 2001 May; 40(17):5190-9. PubMed ID: 11318641
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Nitrous oxide degradation by cobalamin-dependent methionine synthase: characterization of the reactants and products in the inactivation reaction.
    Drummond JT; Matthews RG
    Biochemistry; 1994 Mar; 33(12):3732-41. PubMed ID: 8142373
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Reconstitution of Monomethylamine:Coenzyme M methyl transfer with a corrinoid protein and two methyltransferases purified from Methanosarcina barkeri.
    Burke SA; Krzycki JA
    J Biol Chem; 1997 Jun; 272(26):16570-7. PubMed ID: 9195968
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Methane formation from methyl-coenzyme M in a system containing methyl-coenzyme M reductase, component B and reduced cobalamin.
    Ankel-Fuchs D; Thauer RK
    Eur J Biochem; 1986 Apr; 156(1):171-7. PubMed ID: 3082633
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Cobamide-dependent methanol-cyanocob(I)alamin methyltransferase of Methanosarcina barkeri.
    Blaylock BA
    Arch Biochem Biophys; 1968 Mar; 124(1):314-24. PubMed ID: 5661607
    [No Abstract]   [Full Text] [Related]  

  • 91. Mechanistic insights for formation of an organometallic Co-C bond in the methyl transfer reaction catalyzed by methionine synthase.
    Kumar N; Kozlowski PM
    J Phys Chem B; 2013 Dec; 117(50):16044-57. PubMed ID: 24164324
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Methyl transfer reactions catalyzed by cobalamin-dependent enzymes: Insight from molecular docking.
    Malinowski S; Ghosh AP; Edwards S; Jaroszynska-Wolinska J; Kozlowski PM
    J Mol Graph Model; 2021 May; 104():107831. PubMed ID: 33529932
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The synthetic substrate succinyl(carbadethia)-CoA generates cob(II)alamin on adenosylcobalamin-dependent methylmalonyl-CoA mutase.
    Keep NH; Smith GA; Evans MC; Diakun GP; Leadlay PF
    Biochem J; 1993 Oct; 295 ( Pt 2)(Pt 2):387-92. PubMed ID: 7902085
    [TBL] [Abstract][Full Text] [Related]  

  • 94. N5-methyltetrahydromethanopterin: coenzyme M methyltransferase in methanogenic archaebacteria is a membrane protein.
    Fischer R; Gärtner P; Yeliseev A; Thauer RK
    Arch Microbiol; 1992; 158(3):208-17. PubMed ID: 1444718
    [TBL] [Abstract][Full Text] [Related]  

  • 95. [Effect of a corrinoid on Methanosarcina barkeri DNA synthesis].
    Ryzhkova EP; Briukhanov AL
    Mikrobiologiia; 2009; 78(1):5-11. PubMed ID: 19334592
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Role of the Axial Base in the Modulation of the Cob(I)alamin Electronic Properties: Insight from QM/MM, DFT, and CASSCF Calculations.
    Kumar N; Alfonso-Prieto M; Rovira C; Lodowski P; Jaworska M; Kozlowski PM
    J Chem Theory Comput; 2011 May; 7(5):1541-51. PubMed ID: 26610143
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Clustered genes encoding the methyltransferases of methanogenesis from monomethylamine.
    Burke SA; Lo SL; Krzycki JA
    J Bacteriol; 1998 Jul; 180(13):3432-40. PubMed ID: 9642198
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Unravelling the one-carbon metabolism of the acetogen Sporomusa strain An4 by genome and proteome analysis.
    Visser M; Pieterse MM; Pinkse MW; Nijsse B; Verhaert PD; de Vos WM; Schaap PJ; Stams AJ
    Environ Microbiol; 2016 Sep; 18(9):2843-55. PubMed ID: 26147498
    [TBL] [Abstract][Full Text] [Related]  

  • 99. EPR spectroscopic evidence for the mechanism-based inactivation of adenosylcobalamin-dependent diol dehydratase by coenzyme analogs.
    Yamanishi M; Yamada S; Ishida A; Yamauchi J; Toraya T
    J Biochem; 1998 Sep; 124(3):598-601. PubMed ID: 9722671
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Kinetic studies on the reaction between cob(I)alamin and peroxynitrite: rapid oxidation of cob(I)alamin to cob(II)alamin by peroxynitrous acid.
    Mukherjee R; Brasch NE
    Chemistry; 2011 Oct; 17(42):11723-7. PubMed ID: 21922587
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.