These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 1021613)

  • 1. Inhibitory effect of endogenous macromolecule on the Ca++-stimulated acetylcholine release from the crude synaptic vesicles.
    Hata F; Kuo CH; Matsuda T; Yoshida H
    Jpn J Pharmacol; 1976 Dec; 26(6):762-4. PubMed ID: 1021613
    [No Abstract]   [Full Text] [Related]  

  • 2. Factors required for Ca-sensitive acetylcholine release from crude synaptic vesicles.
    Hata F; Kuo CH; Matsuda T; Yoshida H
    J Neurochem; 1976 Jul; 27(1):139-44. PubMed ID: 956822
    [No Abstract]   [Full Text] [Related]  

  • 3. Effects of synaptic plasma membranes on release of acetylcholine from synaptic vesicles.
    Kuo CH; Ichida S; Hata F; Yoshida H
    Jpn J Pharmacol; 1978 Jun; 28(3):339-43. PubMed ID: 702938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of ascorbic acid on release of acetylcholine from synaptic vesicles prepared from different species of animals and release of noradrenaline from synaptic vesicles of rat brain.
    Kuo CH; Hata F; Yoshida H; Yamatodani A; Wada H
    Life Sci; 1979 Mar; 24(10):911-5. PubMed ID: 109717
    [No Abstract]   [Full Text] [Related]  

  • 5. Effect of veratridine on miniature endplate current amplitudes at the rat neuromuscular junction and acetylcholine uptake by Torpedo synaptic vesicles.
    Pemberton KE; Nguyen ML; Prior C; Parsons SM; Marshall IG
    Brain Res; 1995 Feb; 671(2):267-74. PubMed ID: 7743214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cholinergic nerve terminals contain ascorbic acid which induces Ca2+-dependent release of acetylcholine and ATP from isolated Torpedo synaptic vesicles.
    Pinchasi I; Michaelson DM; Sokolovsky M
    FEBS Lett; 1979 Dec; 108(1):189-92. PubMed ID: 520543
    [No Abstract]   [Full Text] [Related]  

  • 7. Functional reconstitution of KCl-evoked, Ca(2+)-dependent acetylcholine release system in Xenopus oocytes microinjected with presynaptic plasma membranes and synaptic vesicles.
    Canals JM; Ruiz-Avila L; Cantí C; Solsona C; Marsal J
    J Neurosci Res; 1996 Apr; 44(2):106-14. PubMed ID: 8723218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ascorbic acid, an endogenous factor required for acetylcholine release from the synaptic vesicles.
    Kuo CH; Yoshida H
    Jpn J Pharmacol; 1980 Aug; 30(4):481-92. PubMed ID: 7206361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors required for calcium dependent acetylcholine release from isolated torpedo synaptic vesicles.
    Michaelson DM; Pinchasi I; Sokolovsky M
    Biochem Biophys Res Commun; 1978 Feb; 80(3):547-52. PubMed ID: 204306
    [No Abstract]   [Full Text] [Related]  

  • 10. The stimulus-induced release of acetylcholine from synaptosome beds and its calcium dependence.
    De Belleroche JS; Bradford HF
    J Neurochem; 1972 Jul; 19(7):1817-9. PubMed ID: 4537789
    [No Abstract]   [Full Text] [Related]  

  • 11. Molecular aspects of acetylcholine release: an overview.
    Rodríguez de Lores Arnaiz G
    Prog Brain Res; 1993; 98():213-8. PubMed ID: 8248511
    [No Abstract]   [Full Text] [Related]  

  • 12. Comparison of exocytotic mechanisms between acetylcholine- and catecholamine-containing vesicles in rat pheochromocytoma cells.
    Nishiki T; Shoji-Kasai Y; Sekiguchi M; Iwasaki S; Kumakura K; Takahashi M
    Biochem Biophys Res Commun; 1997 Oct; 239(1):57-62. PubMed ID: 9345269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Torpedo synaptosomes: evidence for synaptic vesicle fusion accompanying Ca2+-induced ionophore (A23187)-mediated acetylcholine release.
    Michaelson DM; Bilen J; Volsky D
    Brain Res; 1978 Oct; 154(2):409-14. PubMed ID: 356931
    [No Abstract]   [Full Text] [Related]  

  • 14. Calcium-dependent release of accumulated glutamate from synaptic vesicles within permeabilized nerve terminals.
    Kish PE; Ueda T
    Neurosci Lett; 1991 Jan; 122(2):179-82. PubMed ID: 1902921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of delta pH in cholinergic synaptic vesicles: its effect on storage and release of acetylcholine.
    Michaelson DM; Angel I
    Life Sci; 1980 Jul; 27(1):39-44. PubMed ID: 7401925
    [No Abstract]   [Full Text] [Related]  

  • 16. Storage and release of acetylcholine in a sympathetic ganglion.
    Collier B; Tandon A; Prado MA; Bachoo M
    Prog Brain Res; 1993; 98():183-9. PubMed ID: 8248507
    [No Abstract]   [Full Text] [Related]  

  • 17. Effects of an inhibitor of the synaptic vesicle acetylcholine transport system on quantal neurotransmitter release: an electrophysiological study.
    Lupa MT
    Brain Res; 1988 Sep; 461(1):118-26. PubMed ID: 3265645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bicarbonate and magnesium ion-ATP dependent stimulation of acetylcholine uptake by Torpedo electric organ synaptic vesicles.
    Koenigsberger R; Parsons SM
    Biochem Biophys Res Commun; 1980 May; 94(1):305-12. PubMed ID: 7387697
    [No Abstract]   [Full Text] [Related]  

  • 19. Synthesis and release of ( 14 C)acetylcholine in synaptosomes.
    Haga T
    J Neurochem; 1971 Jun; 18(6):781-98. PubMed ID: 5105924
    [No Abstract]   [Full Text] [Related]  

  • 20. Effect of cetiedil analogs on acetylcholine and choline fluxes in synaptosomes and vesicles.
    Gaudry-Talarmain YM; Diebler MF; Robba M; Lancelot JC; Lesbats B; Israël M
    Eur J Pharmacol; 1989 Aug; 166(3):427-33. PubMed ID: 2806370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.