These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 10216177)
21. Ocular melatonin rhythms in the goldfish, Carassius auratus. Iigo M; Furukawa K; Hattori A; Ohtani-Kaneko R; Hara M; Suzuki T; Tabata M; Aida K J Biol Rhythms; 1997 Apr; 12(2):182-92. PubMed ID: 9090571 [TBL] [Abstract][Full Text] [Related]
22. Daily and circadian variations of the pineal and ocular melatonin contents and their contributions to the circulating melatonin in the Japanese newt, Cynops pyrrhogaster. Chiba A; Hattori A; Iigo M Zoolog Sci; 2005 Jan; 22(1):65-70. PubMed ID: 15684585 [TBL] [Abstract][Full Text] [Related]
23. Regulation of pineal rhythms in chickens: effects of blinding, constant light, constant dark, and superior cervical ganglionectomy. Ralph CL; Binkley S; MacBride SE; Klein DC Endocrinology; 1975 Dec; 97(6):1373-8. PubMed ID: 1239366 [TBL] [Abstract][Full Text] [Related]
24. Physiological control of melatonin synthesis and secretion: mechanisms, generating rhythms in melatonin, methoxytryptophol, and arginine vasotocin levels and effects on the pineal of endogenous catecholamines, the estrous cycle, and environmental lighting. Wurtman RJ; Ozaki Y J Neural Transm Suppl; 1978; (13):59-70. PubMed ID: 288858 [TBL] [Abstract][Full Text] [Related]
25. Regulation of pineal rhythms in chickens: refractory period and nonvisual light perception. Binkley S; Macbride SE; Klein DC; Ralph CL Endocrinology; 1975 Apr; 96(4):848-53. PubMed ID: 1120473 [TBL] [Abstract][Full Text] [Related]
26. Hormonal and locomotor activity rhythms in rats under 90-min dark-pulse conditions. Laakso ML; Porkka-Heiskanen T; Leinonen L; Joutsiniemi SL; Männistö PT Am J Physiol; 1993 Jun; 264(6 Pt 2):R1058-64. PubMed ID: 8322957 [TBL] [Abstract][Full Text] [Related]
27. Dissociation between the circadian rhythm of locomotor activity and the pineal clock in the Japanese newt. Chiba A; Kikuchi M; Aoki K J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Aug; 189(8):655-9. PubMed ID: 12844232 [TBL] [Abstract][Full Text] [Related]
28. Persistence of circadian oscillation while locomotor activity and plasma melatonin levels became aperiodic under prolonged continuous light in the rat. Honma S; Kanematsu N; Katsuno Y; Honma K Neurosci Lett; 1996 Sep; 216(1):49-52. PubMed ID: 8892389 [TBL] [Abstract][Full Text] [Related]
29. Turkey retina and pineal gland differentially respond to constant environment. Lorenc-Duda A; Berezińska M; Bothorel B; Pévet P; Zawilska JB J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Oct; 194(10):907-13. PubMed ID: 18751985 [TBL] [Abstract][Full Text] [Related]
30. Individual pineal cells in chick possess photoreceptive, circadian clock and melatonin-synthesizing capacities in vitro. Nakahara K; Murakami N; Nasu T; Kuroda H; Murakami T Brain Res; 1997 Nov; 774(1-2):242-5. PubMed ID: 9452218 [TBL] [Abstract][Full Text] [Related]
31. Melatonin excretion rhythms in the cultured pineal organ of the lamprey, Lampetra japonica. Samejima M; Tamotsu S; Uchida K; Moriguchi Y; Morita Y Biol Signals; 1997; 6(4-6):241-6. PubMed ID: 9500662 [TBL] [Abstract][Full Text] [Related]
32. Signal transmission from the suprachiasmatic nucleus to the pineal gland via the paraventricular nucleus: analysed from arg-vasopressin peptide, rPer2 mRNA and AVP mRNA changes and pineal AA-NAT mRNA after the melatonin injection during light and dark periods. Isobe Y; Nishino H Brain Res; 2004 Jul; 1013(2):204-11. PubMed ID: 15193530 [TBL] [Abstract][Full Text] [Related]
33. Differential regulation of feeding rhythms through a multiple-photoreceptor system in an avian model of blindness. Valdez DJ; Nieto PS; Díaz NM; Garbarino-Pico E; Guido ME FASEB J; 2013 Jul; 27(7):2702-12. PubMed ID: 23585397 [TBL] [Abstract][Full Text] [Related]
34. Importance of light in temporal organization of photoreceptor proteins and melatonin-producing system in the pineal of carp Catla catla. Seth M; Maitra SK Chronobiol Int; 2010 May; 27(3):463-86. PubMed ID: 20524796 [TBL] [Abstract][Full Text] [Related]
35. Ocular melatonin rhythms in teleost fish. Iigo M; Furukawa K; Nishi G; Tabata M; Aida K Brain Behav Evol; 2007; 69(2):114-21. PubMed ID: 17230019 [TBL] [Abstract][Full Text] [Related]
36. Daily variation of constitutively activated nuclear factor kappa B (NFKB) in rat pineal gland. Cecon E; Fernandes PA; Pinato L; Ferreira ZS; Markus RP Chronobiol Int; 2010 Jan; 27(1):52-67. PubMed ID: 20205557 [TBL] [Abstract][Full Text] [Related]
37. Circadian rhythms in blinded rats: correlation between pineal and activity cycles. Pohl CR; Gibbs FP Am J Physiol; 1978 Mar; 234(3):R110-4. PubMed ID: 629367 [TBL] [Abstract][Full Text] [Related]
38. Circadian variations of neuropeptide Y-like immunoreactivity in the rat pineal gland. Shinohara K; Inouye ST Neuroreport; 1994 Jun; 5(10):1262-4. PubMed ID: 7919179 [TBL] [Abstract][Full Text] [Related]
39. Synchronization of Indian weaver bird circadian rhythms to food and light zeitgebers: role of pineal. Rani S; Singh S; Malik S; Singh J; Kumar V Chronobiol Int; 2009 May; 26(4):653-65. PubMed ID: 19444747 [TBL] [Abstract][Full Text] [Related]
40. Changes in serotonin levels, N-acetyltransferase activity, hydroxyindole-O-methyltransferase activity, and melatonin levels in the pineal gland of the Richardson's ground squirrel in relation to the light-dark cycle. Reiter RJ; Hurlbut EC; Esquifino AI; Champney TH; Steger RW Neuroendocrinology; 1984 Oct; 39(4):356-60. PubMed ID: 6493447 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]