These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 10216280)
1. Accumulation of glycolipids in mutant Chinese hamster ovary cells (Z65) with defective peroxisomal assembly and comparison of the metabolic rate of glycosphingolipids between Z65 cells and wild-type CHO-K1 cells. Saito M; Iwamori M; Lin B; Oka A; Fujiki Y; Shimozawa N; Kamoshita S; Yanagisawa M; Sakakihara Y Biochim Biophys Acta; 1999 Apr; 1438(1):55-62. PubMed ID: 10216280 [TBL] [Abstract][Full Text] [Related]
2. Molecular cloning of Chinese hamster ceramide glucosyltransferase and its enhanced expression in peroxisome-defective mutant Z65 cells. Saito M; Fukushima Y; Tatsumi K; Bei L; Fujiki Y; Iwamori M; Igarashi T; Sakakihara Y Arch Biochem Biophys; 2002 Jul; 403(2):171-8. PubMed ID: 12139966 [TBL] [Abstract][Full Text] [Related]
3. Alterations in the molecular species of plasmalogen phospholipids and glycolipids due to peroxisomal dysfunction in Chinese hamster ovary-mutant Z65 cells by FABMS method. Saito M; Horikawa M; Iwamori Y; Sakakihara Y; Mizuguchi M; Igarashi T; Fujiki Y; Iwamori M J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Jun; 852(1-2):367-73. PubMed ID: 17383243 [TBL] [Abstract][Full Text] [Related]
4. Alterations of fatty acid metabolism and membrane fluidity in peroxisome-defective mutant ZP102 cells. Nagura M; Saito M; Iwamori M; Sakakihara Y; Igarashi T Lipids; 2004 Jan; 39(1):43-50. PubMed ID: 15055234 [TBL] [Abstract][Full Text] [Related]
5. Isolation and characterization of peroxisome-deficient Chinese hamster ovary cell mutants representing human complementation group III. Okumoto K; Bogaki A; Tateishi K; Tsukamoto T; Osumi T; Shimozawa N; Suzuki Y; Orii T; Fujiki Y Exp Cell Res; 1997 May; 233(1):11-20. PubMed ID: 9184070 [TBL] [Abstract][Full Text] [Related]
6. Effect of gangliosides on the distribution of a glycosylphosphatidylinositol-anchored protein in plasma membrane from Chinese hamster ovary-K1 cells. Crespo PM; Zurita AR; Daniotti JL J Biol Chem; 2002 Nov; 277(47):44731-9. PubMed ID: 12237294 [TBL] [Abstract][Full Text] [Related]
7. Hydroxyeicosatetraenoic acid oxidation in Chinese hamster ovary cells: a peroxisomal metabolic pathway. Gordon JA; Zoeller RA; Spector AA Biochim Biophys Acta; 1991 Aug; 1085(1):21-8. PubMed ID: 1892874 [TBL] [Abstract][Full Text] [Related]
8. Genetic evidence that phosphatidylserine synthase II catalyzes the conversion of phosphatidylethanolamine to phosphatidylserine in Chinese hamster ovary cells. Saito K; Nishijima M; Kuge O J Biol Chem; 1998 Jul; 273(27):17199-205. PubMed ID: 9642289 [TBL] [Abstract][Full Text] [Related]
9. Control of phosphatidylserine synthase II activity in Chinese hamster ovary cells. Kuge O; Saito K; Nishijima M J Biol Chem; 1999 Aug; 274(34):23844-9. PubMed ID: 10446148 [TBL] [Abstract][Full Text] [Related]
10. Animal cell mutants represent two complementation groups of peroxisome-defective Zellweger syndrome. Shimozawa N; Tsukamoto T; Suzuki Y; Orii T; Fujiki Y J Clin Invest; 1992 Nov; 90(5):1864-70. PubMed ID: 1430210 [TBL] [Abstract][Full Text] [Related]
12. Glycolipids support E-selectin-specific strong cell tethering under flow. Burdick MM; Bochner BS; Collins BE; Schnaar RL; Konstantopoulos K Biochem Biophys Res Commun; 2001 Jun; 284(1):42-9. PubMed ID: 11374868 [TBL] [Abstract][Full Text] [Related]
13. Peroxisome assembly factor 1: nonsense mutation in a peroxisome-deficient Chinese hamster ovary cell mutant and deletion analysis. Tsukamoto T; Shimozawa N; Fujiki Y Mol Cell Biol; 1994 Aug; 14(8):5458-65. PubMed ID: 8035823 [TBL] [Abstract][Full Text] [Related]
14. Phosphatidylserine biosynthesis in cultured Chinese hamster ovary cells. III. Genetic evidence for utilization of phosphatidylcholine and phosphatidylethanolamine as precursors. Kuge O; Nishijima M; Akamatsu Y J Biol Chem; 1986 May; 261(13):5795-8. PubMed ID: 3084471 [TBL] [Abstract][Full Text] [Related]
15. An apparent decrease in cholesterol biosynthesis in peroxisomal-defective Chinese hamster ovary cells is related to impaired mitochondrial oxidation. Oettl K; Höfler G; Ness GC; Sattler W; Malle E Biochem Biophys Res Commun; 2003 Jun; 305(4):957-63. PubMed ID: 12767923 [TBL] [Abstract][Full Text] [Related]
16. Isolation and characterization of a Chinese hamster ovary cell mutant with altered regulation of phosphatidylserine biosynthesis. Hasegawa K; Kuge O; Nishijima M; Akamatsu Y J Biol Chem; 1989 Nov; 264(33):19887-92. PubMed ID: 2684962 [TBL] [Abstract][Full Text] [Related]
17. Transport of D-[1-14C]-amino acids into Chinese hamster ovary (CHO-K1) cells: implications for use of labeled d-amino acids as molecular imaging agents. Shikano N; Nakajima S; Kotani T; Ogura M; Sagara J; Iwamura Y; Yoshimoto M; Kubota N; Ishikawa N; Kawai K Nucl Med Biol; 2007 Aug; 34(6):659-65. PubMed ID: 17707806 [TBL] [Abstract][Full Text] [Related]
18. Glycolipid and glycoprotein transport through the Golgi complex are similar biochemically and kinetically. Reconstitution of glycolipid transport in a cell free system. Wattenberg BW J Cell Biol; 1990 Aug; 111(2):421-8. PubMed ID: 2166051 [TBL] [Abstract][Full Text] [Related]
19. Control of phosphatidylserine biosynthesis through phosphatidylserine-mediated inhibition of phosphatidylserine synthase I in Chinese hamster ovary cells. Kuge O; Hasegawa K; Saito K; Nishijima M Proc Natl Acad Sci U S A; 1998 Apr; 95(8):4199-203. PubMed ID: 9539713 [TBL] [Abstract][Full Text] [Related]
20. Characterization of p53 in Chinese hamster cell lines CHO-K1, CHO-WBL, and CHL: implications for genotoxicity testing. Hu T; Miller CM; Ridder GM; Aardema MJ Mutat Res; 1999 May; 426(1):51-62. PubMed ID: 10320750 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]