These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 1021686)

  • 1. Physical immobilization of enzymes by hollow-fiber membranes.
    Chambers RP; Cohen W; Baricos WH
    Methods Enzymol; 1976; 44():291-317. PubMed ID: 1021686
    [No Abstract]   [Full Text] [Related]  

  • 2. Enhanced starch hydrolysis using α-amylase immobilized on cellulose ultrafiltration affinity membrane.
    Konovalova V; Guzikevich K; Burban A; Kujawski W; Jarzynka K; Kujawa J
    Carbohydr Polym; 2016 Nov; 152():710-717. PubMed ID: 27516322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Use of immobilized enzymes in detoxification. II. Immobilization and characterization of enzymes on hollow fiber devices].
    Mazzola G; Cremonesi P; Colombi S; Vecchio G; Agnellini D; Pietta PG
    Minerva Nefrol; 1979; 26(2):185-7. PubMed ID: 471347
    [No Abstract]   [Full Text] [Related]  

  • 4. [Experimental development of hollow cellulose membranes for blood detoxification].
    Holtz M; Bartsch D; Gensrich HJ; Gröbe V; Klinkmann H
    Z Urol Nephrol; 1983 Dec; 76(12):783-7. PubMed ID: 6670384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical and experimental analysis of a soluble enzyme membrane reactor.
    Greco G; Alfani F; Iorio G; Cantarella M; Formisano A; Gianfreda L; Palescandolo R; Scardi V
    Biotechnol Bioeng; 1979 Aug; 21(8):1421-38. PubMed ID: 454808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity studies of immobilized subtilisin on functionalized pure cellulose-based membranes.
    Liu J; Wang J; Bachas LG; Bhattacharyya D
    Biotechnol Prog; 2001; 17(5):866-71. PubMed ID: 11587576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hollow fiber enzyme reactors.
    Rony PR
    J Am Chem Soc; 1972 Nov; 94(23):8247-8. PubMed ID: 5079967
    [No Abstract]   [Full Text] [Related]  

  • 8. Cholesterol oxidation using hollow fiber dialyzer immobilized with cholesterol oxidase: preparation and properties.
    Lin CC; Yang MC
    Biotechnol Prog; 2003; 19(2):361-4. PubMed ID: 12675572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilization and characterization of L-asparaginase on hollow fibers.
    Mazzola G; Vecchio G
    Int J Artif Organs; 1980 Mar; 3(2):120-3. PubMed ID: 7364507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perm-selective dialysis membranes. II. Films based on acrylic acid-n-butyl methacrylate copolymers--a critical comparison with cellulose films.
    Muir WM; Gray RA; Courtney JM; Ritchie PD
    J Biomed Mater Res; 1973 Jan; 7(1):3-37. PubMed ID: 4691157
    [No Abstract]   [Full Text] [Related]  

  • 11. Preparation and properties of co-reticulated invertase supported by an ultrafiltration membrane.
    Cantarella M; Gianfreda L; Palescandolo R; Scardi V
    Biochem J; 1977 Oct; 167(1):313-5. PubMed ID: 588266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dialysis membranes: cellulose acetate compared with other available membrane materials.
    Miller JH; Shinaberger JH; Martin FE
    Med Instrum; 1974; 8(3):214-7. PubMed ID: 4838452
    [No Abstract]   [Full Text] [Related]  

  • 13. Anisotropic membranes with carboxypeptidase G1.
    Pitt AM; Cramer SM; Czernicki AB; Kalghatgi K; Horvath C; Solomon BA
    Appl Biochem Biotechnol; 1983 Feb; 8(1):55-68. PubMed ID: 6689601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Initial trials of a molecular separation artificial kidney.
    Dorson WJ; Pizziconi VB; Voorhees ME; Calkins JM; Christianson HB; Cotter DJ; Fargotstein R; Markovitz M; Monty DE; Tomisaka DM
    Trans Am Soc Artif Intern Organs; 1973; 19():109-18. PubMed ID: 4722726
    [No Abstract]   [Full Text] [Related]  

  • 15. Removal of beta-2-microglobulin by diffusion alone is feasible using highly permeable dialysis membranes.
    Naitoh A; Tatsuguchi T; Okada M; Ohmura T; Sakai K
    ASAIO Trans; 1988; 34(3):630-4. PubMed ID: 3058183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxone
    Moore JP; Robling K; Romero C; Kiper K; Dachavaram SS; Crooks PA; Hestekin JA
    Polymers (Basel); 2020 Jun; 12(6):. PubMed ID: 32549325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface functionalization of porous polypropylene membranes with polyaniline for protein immobilization.
    Piletsky S; Piletska E; Bossi A; Turner N; Turner A
    Biotechnol Bioeng; 2003 Apr; 82(1):86-92. PubMed ID: 12569627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic activation of cellulose acetate membrane for reducing of protein fouling.
    Koseoglu-Imer DY; Dizge N; Koyuncu I
    Colloids Surf B Biointerfaces; 2012 Apr; 92():334-9. PubMed ID: 22218336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical immobilization of Rhizopus oryzae lipase onto cellulose substrate: activity and stability studies.
    Karra-Châabouni M; Bouaziz I; Boufi S; Botelho do Rego AM; Gargouri Y
    Colloids Surf B Biointerfaces; 2008 Oct; 66(2):168-77. PubMed ID: 18684596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-Engineered Biocatalytic Composite Membranes for Reduced Protein Fouling and Self-Cleaning.
    Vanangamudi A; Saeki D; Dumée LF; Duke M; Vasiljevic T; Matsuyama H; Yang X
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):27477-27487. PubMed ID: 30048587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.